"Gromov-Witten invariants of compact Calabi-Yau orbifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (section 'expositions' added) |
imported>Pythagoras0 |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==Katz-Klemm-Vafa conjecture for K3 surfaces== | ==Katz-Klemm-Vafa conjecture for K3 surfaces== | ||
* KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms | * KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms | ||
+ | * recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera | ||
8번째 줄: | 9번째 줄: | ||
==articles== | ==articles== | ||
+ | * Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong, On the Remodeling Conjecture for Toric Calabi-Yau 3-Orbifolds, arXiv:1604.07123 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07123 | ||
* R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces, arXiv:1404.6698 [math.AG], April 27 2014, http://arxiv.org/abs/1404.6698 | * R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces, arXiv:1404.6698 [math.AG], April 27 2014, http://arxiv.org/abs/1404.6698 | ||
* Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270 | * Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270 | ||
16번째 줄: | 18번째 줄: | ||
* R. Pandharipande, R. P. Thomas, Notes on the proof of the KKV conjecture, arXiv:1411.0896 [math.AG], November 04 2014, http://arxiv.org/abs/1411.0896 | * R. Pandharipande, R. P. Thomas, Notes on the proof of the KKV conjecture, arXiv:1411.0896 [math.AG], November 04 2014, http://arxiv.org/abs/1411.0896 | ||
+ | [[분류:migrate]] |
2020년 11월 12일 (목) 23:28 기준 최신판
Katz-Klemm-Vafa conjecture for K3 surfaces
- KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms
- recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera
articles
- Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong, On the Remodeling Conjecture for Toric Calabi-Yau 3-Orbifolds, arXiv:1604.07123 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07123
- R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces, arXiv:1404.6698 [math.AG], April 27 2014, http://arxiv.org/abs/1404.6698
- Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270
- Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
- Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.
expositions
- R. Pandharipande, R. P. Thomas, Notes on the proof of the KKV conjecture, arXiv:1411.0896 [math.AG], November 04 2014, http://arxiv.org/abs/1411.0896