"Hubbard model"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)  | 
				imported>Pythagoras0   | 
				||
| 117번째 줄: | 117번째 줄: | ||
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | ||
* http://functions.wolfram.com/  | * http://functions.wolfram.com/  | ||
| + | [[분류:integrable systems]]  | ||
2012년 10월 29일 (월) 07:51 판
introduction
- The Hubbard model describes hopping electrons on a lattice
 - 1968 Lieb and We
- application of Bethe ansatz
 
 - 1972 Takahasi
- string hypothesis
 - replace the Lieb-Wu equations by simpler ones
 - proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
 
 - algebraic Bethe ansatz for the Hubbard model
 
Lieb-Wu equations
- describing Eigenstates of the Hubbard Hamiltonian
\(\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}\), \(j=1,\cdots, N\)
\(\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}\), \(l=1,\cdots, M\) 
string hypothesis
history
encyclopedia
- http://en.wikipedia.org/wiki/Hubbard_model
 - http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- The One-Dimensional Hubbard Model
 - 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
articles
- Lax Pair for the One-Dimensional Hubbard Model
- Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu, 1986
 
 - Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu, 1986
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/10.1143/JPSJ.56.1340
 
question and answers(Math Overflow)
blogs
experts on the field