"Heisenberg spin1/2 XXX chain"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* XXX spin chain can be solved by [[Bethe ansatz]]
 
* XXX spin chain can be solved by [[Bethe ansatz]]
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5>review on spin system</h5>
+
==review on spin system</h5>
  
 
* [[spin system and Pauli exclusion principle|spin system]]<br>
 
* [[spin system and Pauli exclusion principle|spin system]]<br>
21번째 줄: 21번째 줄:
 
 
 
 
  
<h5>summary</h5>
+
==summary</h5>
  
 
*  Hamiltonian of XXX spin chain with  anisotropic parameter <math>\Delta=1</math><br><math>\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \sigma_j^z \sigma_{j+1}^z+1)</math><br>
 
*  Hamiltonian of XXX spin chain with  anisotropic parameter <math>\Delta=1</math><br><math>\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \sigma_j^z \sigma_{j+1}^z+1)</math><br>
33번째 줄: 33번째 줄:
 
 
 
 
  
<h5>wavefunction amplitude</h5>
+
==wavefunction amplitude</h5>
  
 
*  amplitudes <math>A(P)</math> satisfies<br><math>A_{P}=\sigma_{P}\prod_{1\leq i< j\n}s_{P_{j}P_{i}}</math>, where <math>\sigma_{P}</math> = sign of the permutation<br>
 
*  amplitudes <math>A(P)</math> satisfies<br><math>A_{P}=\sigma_{P}\prod_{1\leq i< j\n}s_{P_{j}P_{i}}</math>, where <math>\sigma_{P}</math> = sign of the permutation<br>
42번째 줄: 42번째 줄:
 
 
 
 
  
<h5>Bethe ansatz equation</h5>
+
==Bethe ansatz equation</h5>
  
 
<math>s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}</math>
 
<math>s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}</math>
124번째 줄: 124번째 줄:
 
 
 
 
  
<h5>eigenvalues</h5>
+
==eigenvalues</h5>
  
 
 
 
 
130번째 줄: 130번째 줄:
 
 
 
 
  
<h5>emptiness formation probability</h5>
+
==emptiness formation probability</h5>
  
 
 
 
 
138번째 줄: 138번째 줄:
 
 
 
 
  
<h5>near neighbor correlations</h5>
+
==near neighbor correlations</h5>
  
 
 
 
 
148번째 줄: 148번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
156번째 줄: 156번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[six-vertex model and Quantum XXZ Hamiltonian]]
 
* [[six-vertex model and Quantum XXZ Hamiltonian]]
177번째 줄: 177번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
190번째 줄: 190번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
* [http://pos.sissa.it/archive/conferences/038/006/Solvay_006.pdf XXX Spin Chain: from Bethe Solution to Open Problems]<br>  <br>
 
* [http://pos.sissa.it/archive/conferences/038/006/Solvay_006.pdf XXX Spin Chain: from Bethe Solution to Open Problems]<br>  <br>
219번째 줄: 219번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
228번째 줄: 228번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
239번째 줄: 239번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
247번째 줄: 247번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 14:05 판

==introduction

 

==review on spin system

  • Pauli matrices (해밀턴의 사원수 참조)
    \(\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \)
    \(\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \)
    \(\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\)
  • raising and lowering operators
    \(\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\)
    \(\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
    \(\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
    \([\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\)

 

\(h=\frac{\sigma_{i}\cdot\sigma_{j}+1}{2}\) acts as the permutation operator

 

 

==summary

  • Hamiltonian of XXX spin chain with  anisotropic parameter \(\Delta=1\)
    \(\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \sigma_j^z \sigma_{j+1}^z+1)\)
  • two body scattering term
    \(s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}\)
  • phase shift term \(\theta(p,q)\)
    \(\exp(-i\theta(k_j,k_l))=\frac{s_{l,j}}{s_{j,l}}=\frac{1-2\Delta e^{ik_j}+e^{i(k_j+k_l)}}{1-2\Delta e^{ik_l}+e^{i(k_j+k_l)}}\)
  • equation satisfied by wave numbers
    \(\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{s_{l,j}}{s_{j,l}}=(-1)^{n-1}\prod_{l=1}^{L}\exp(-i\theta(k_j,k_l))\)
  • fundamental equation
    \(k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\)

 

 

==wavefunction amplitude

  • amplitudes \(A(P)\) satisfies
    \(A_{P}=\sigma_{P}\prod_{1\leq i< j\n}s_{P_{j}P_{i}}\), where \(\sigma_{P}\) = sign of the permutation
  • \(A(312)\) corresponds to the permutation \(1\to3, 2\to1, 3\to2\)
  • n=2 case
    \(A(12)=s_{21}\)
    \(A(21)=-s_{12}\)
  • n=3 case
    \(A(123)=s_{21}s_{31}s_{32}\)
    \(A(312)=s_{13}s_{23}s_{21}\)
    \(A(231)=s_{32}s_{12}s_{13}\)
     

 

==Bethe ansatz equation

\(s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}\)

\(\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{s_{l,j}}{s_{j,l}}\)

n=1

\(\exp(ik_jL)=1\)

n=2

\(\exp(ik_1L)=-\frac{s_{2,1}}{s_{1,2}}=-\frac{1-2e^{ik_1}+ e^{ik_1+ik_2}}{1-2e^{ik_2}+ e^{ik_1+ik_2}}\)

\(\exp(ik_2L)=-\frac{s_{1,2}}{s_{2,1}}=-\frac{1-2e^{ik_2}+ e^{ik_1+ik_2}}{1-2e^{ik_1}+ e^{ik_1+ik_2}}\)

 

n=3

\(\exp(ik_1L)=\frac{s_{2,1}s_{3,1}}{s_{1,2}s_{1,3}}\)

\(\exp(ik_2L)=\frac{s_{1,2}s_{3,2}}{s_{2,1}s_{2,3}}\)

\(\exp(ik_3L)=\frac{s_{1,3}s_{2,3}}{s_{3,1}s_{3,2}}\)

 

n denote the number of up spins

 

n=0 analysis

 

n=1 analysis

ansatz \(a(x)=e^{ikx}\)

derive difference equations

compute eigenvalue \(E=L-2+2(\cos k)\)

boundary condition \(a(x+L)=a(x)\) implies \(e^{ikL}=1\)

 

n=2 analysis

ansatz \(a(x,y)=A(12)e^{ik_1x+ik_2y}+A(21)e^{ik_2x+ik_1y}\)

derive difference equations to get two-body scattering term

compute eigenvalue \(E=L-4+2(\cos k_1+\cos k_2)\)

use two-body scattering condition \(a(x,x)+a(x+1,x+1)=2a(x,x+1)\) to get \(A(12)/A(21)=-s_{2,1}/s_{1,2}\)

boundary condition \(a(y,x+L)=a(x,y)\) imples \(A(12)/A(21)=e^{ik_1L}\)

 

 

n=3 analysis

ansatz \(a(x,y,z)=A(123)e^{ik_1x+ik_2y+ik_3z}+A(132)e^{ik_1x+ik_3y+ik_2z}+\cdots = \sum _{P}A(P)e^{iP\cdot x}\)

derive difference equations. we get several of them

e.g.

\(a(x,x,z)+a(x+1,x+1,z)=2a(x,x+1,z)\)

compute the eigenvalue \(E=L-4+2(\cos k_1+\cos k_2+\cos k_3)\)

use two-body scattering condition \(a(x,x)+a(x+1,x+1)=2a(x,x+1)\) to get \(A(12)/A(21)=-s_{2,1}/s_{1,2}\)

 

 

==eigenvalues

 

 

==emptiness formation probability

 

 

 

==near neighbor correlations

 

 

 

 

==history

 

 

==related items

 

 

encyclopedia

 

 

==books

 

 

 

==expositions

 

 

articles

 

 

==question and answers(Math Overflow)

 

 

==blogs

 

 

==experts on the field

 

 

==links