"Linking number"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
28번째 줄: 28번째 줄:
 
==expositions==
 
==expositions==
 
* [http://www.math.buffalo.edu/~asikora/Papers/lk.pdf Sikora, Note on the Homfly-pt polynomial and linking numbers]
 
* [http://www.math.buffalo.edu/~asikora/Papers/lk.pdf Sikora, Note on the Homfly-pt polynomial and linking numbers]
 +
 +
[[분류:Knot theory]]

2017년 5월 23일 (화) 22:00 판

linking number and HOMFLY polynomial

  • Let $L$ be a link.
  • $P_L$ denote the HOMFLY polynomial
  • recall that $P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]$ satisfies the skein relation

\[ aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0} \] and $$ P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1} $$


thm (Sikora)

For any link $L$ of $n$ components the limit $$ Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})}) $$ exists.

$Q_L(q)$ is a polynomial in $q$ and $Q_L(q)=\sum c_i(L)q^i$


related items


expositions