"History of Lie theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | Cartan | + | 1913 Cartan spin representations |
20번째 줄: | 20번째 줄: | ||
[http://www.emis.de/journals/SC/1998/3/pdf/smf_sem-cong_3_69-100.pdf From General Relativity to Group Representations] | [http://www.emis.de/journals/SC/1998/3/pdf/smf_sem-cong_3_69-100.pdf From General Relativity to Group Representations] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | # A. Borel [http://books.google.com/books?isbn=978-0-8218-0288-5 Essays in the history of Lie groups and algebraic groups] ISBN 978-0-8218-0288-5 Covers the history. | ||
+ | # Elie Cartan [http://books.google.com/books?id=JY8LAAAAYAAJ Sur la structure des groupes de transformations finis et continus] Cartan's famous 1894 thesis, cleaning up Killing's work on the classification Lie algebras. | ||
+ | # T. Hawkins [http://books.google.com/books?isbn=978-0-387-98963-1 Emergence of the theory of Lie groups] ISBN 978-0-387-98963-1 Covers the early history of the work by Lie, Killing, Cartan and Weyl, from 1868 to 1926. | ||
+ | # N. Jacobson, [http://books.google.com/books?isbn=978-0486638324 Lie algebras] ISBN 978-0486638324 A good reference for all proofs about finite dimensional Lie algebras | ||
+ | # Wilhelm Killing, "Die Zusammensetzung der stetigen endlichen Transformations-gruppen" 1888-1890 [http://www.springerlink.com/content/g8010v1431329811/ part 1][http://www.springerlink.com/content/r5353067l8842662/ part 2][http://www.springerlink.com/content/l53068g50gx44p67/ part 3][http://www.springerlink.com/content/r2mu07227763325n/ part 4] Killing's classification of simple Lie complex Lie algebras. | ||
+ | # S. Lie, F. Engel "Theorie der transformationsgruppen" 1888 [http://www.archive.org/details/theotransformation01liesrich Volume 1][http://www.archive.org/details/theoriedertrans01liegoog Volume 2][http://www.archive.org/details//theoriedertrans00liegoog Volume 3] Lie's monumental summary of his work on Lie groups and algebras. | ||
+ | # Claudio Procesi, [http://www.springerlink.com/content/978-0-387-26040-2 Lie Groups: An Approach through Invariants and Representations], ISBN 978-0387260402. Similar to the course, with more emphasis on invariant theory. | ||
+ | # J.-P. Serre, [http://www.springerlink.com/content/v77q804n5808 Lie algebras and Lie groups] ISBN 978-3540550082 Covers most of the basic theory of Lie algebras. | ||
+ | # J.-P. Serre, [http://books.google.com/books?isbn=978-3-540-67827-4 Complex semisimple Lie algebras] ISBN 978-3-540-67827-4 Covers the classification and representation theory of complex Lie algebras. | ||
+ | # Hermann Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. 1925-1926 [http://dx.doi.org/10.1007/BF01506234 I], [http://dx.doi.org/10.1007/BF01216788 II], [http://dx.doi.org/10.1007/BF01216789 III]. Weyl's paper on the representations of compact Lie groups, giving the Weyl character formula. | ||
+ | # H. Weyl [http://books.google.com/books?isbn=978-0-691-05756-9 The classical groups] ISBN 978-0-691-05756-9 A classic, describing the representation theory of lie groups and its relation to invariant theory |
2011년 12월 2일 (금) 12:54 판
1913 Cartan spin representations
Dynkin, The structure of semi-simple Lie algebras
amre,math.sco.transl.17
history of theory of symmetric polynomials
From General Relativity to Group Representations
- A. Borel Essays in the history of Lie groups and algebraic groups ISBN 978-0-8218-0288-5 Covers the history.
- Elie Cartan Sur la structure des groupes de transformations finis et continus Cartan's famous 1894 thesis, cleaning up Killing's work on the classification Lie algebras.
- T. Hawkins Emergence of the theory of Lie groups ISBN 978-0-387-98963-1 Covers the early history of the work by Lie, Killing, Cartan and Weyl, from 1868 to 1926.
- N. Jacobson, Lie algebras ISBN 978-0486638324 A good reference for all proofs about finite dimensional Lie algebras
- Wilhelm Killing, "Die Zusammensetzung der stetigen endlichen Transformations-gruppen" 1888-1890 part 1part 2part 3part 4 Killing's classification of simple Lie complex Lie algebras.
- S. Lie, F. Engel "Theorie der transformationsgruppen" 1888 Volume 1Volume 2Volume 3 Lie's monumental summary of his work on Lie groups and algebras.
- Claudio Procesi, Lie Groups: An Approach through Invariants and Representations, ISBN 978-0387260402. Similar to the course, with more emphasis on invariant theory.
- J.-P. Serre, Lie algebras and Lie groups ISBN 978-3540550082 Covers most of the basic theory of Lie algebras.
- J.-P. Serre, Complex semisimple Lie algebras ISBN 978-3-540-67827-4 Covers the classification and representation theory of complex Lie algebras.
- Hermann Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. 1925-1926 I, II, III. Weyl's paper on the representations of compact Lie groups, giving the Weyl character formula.
- H. Weyl The classical groups ISBN 978-0-691-05756-9 A classic, describing the representation theory of lie groups and its relation to invariant theory