"History of Lie theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
24번째 줄: | 7번째 줄: | ||
* 갈루아 | * 갈루아 | ||
* Jordan | * Jordan | ||
+ | * 클라인과 리 | ||
− | |||
− | |||
− | |||
==리 군== | ==리 군== | ||
34번째 줄: | 15번째 줄: | ||
* Élie Cartan and is primarily concerned with developments that would now be interpreted as representations of Lie algebras, particularly simple and semisimple algebras. | * Élie Cartan and is primarily concerned with developments that would now be interpreted as representations of Lie algebras, particularly simple and semisimple algebras. | ||
* Hermann Weyl the development of representation theory of Lie groups and algebras. | * Hermann Weyl the development of representation theory of Lie groups and algebras. | ||
− | |||
− | + | ||
+ | ===development of representation theory of Lie groups=== | ||
+ | * 1913 Cartan spin representations | ||
+ | * 19?? Weyl unitarian trick : [[Complete reducibility]] | ||
+ | * Dynkin, The structure of semi-simple Lie algebras | ||
+ | ** amre,math.sco.transl.17 | ||
+ | |||
+ | |||
+ | |||
+ | ===on fraktur=== | ||
+ | * http://mathoverflow.net/questions/87627/fraktur-symbols-for-lie-algebras-mathfrakg-etc | ||
+ | * The point is that group theory and Lie groups in particular were actively developed by German mathematicians in the nineteenth century; they were not inventing exotic notation when they used these particular letters as symbols | ||
+ | |||
+ | |||
==리 타입의 유한군== | ==리 타입의 유한군== | ||
− | |||
* 딕슨 | * 딕슨 | ||
* Tits 기하학적 접근 | * Tits 기하학적 접근 | ||
* Chevalley 대수적 접근 | * Chevalley 대수적 접근 | ||
+ | * [[Chevalley integral form]] | ||
+ | |||
+ | |||
+ | |||
+ | ==modern development== | ||
+ | * [[Kac-Moody algebras]] | ||
+ | * [[Quantum groups]] | ||
+ | * [[Canonical basis and dual canonical basis]] | ||
+ | |||
+ | |||
+ | ==memo== | ||
+ | * history of theory of symmetric polynomials | ||
+ | * the role of invariant theory | ||
+ | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==articles== | ==articles== | ||
58번째 줄: | 59번째 줄: | ||
# H. Weyl [http://books.google.com/books?isbn=978-0-691-05756-9 The classical groups] ISBN 978-0-691-05756-9 A classic, describing the representation theory of lie groups and its relation to invariant theory | # H. Weyl [http://books.google.com/books?isbn=978-0-691-05756-9 The classical groups] ISBN 978-0-691-05756-9 A classic, describing the representation theory of lie groups and its relation to invariant theory | ||
# Chevalley, On certain simple groups | # Chevalley, On certain simple groups | ||
− | |||
− | |||
75번째 줄: | 74번째 줄: | ||
==expository== | ==expository== | ||
+ | * Varadarajan, [http://www.math.ucla.edu/~vsv/liegroups2007/historical%20review.pdf Historical review of Lie Theory] | ||
+ | ** http://www.math.ucla.edu/~vsv/liegroups2007/liegroups2007.html | ||
* Hawkins, Thomas. 1998. “From General Relativity to Group Representations: The Background to Weyl’s Papers of 1925–26.” In Matériaux Pour L’histoire Des Mathématiques Au XX\rm E$ Siècle (Nice, 1996), 3:69–100. Sémin. Congr. Paris: Soc. Math. France. http://www.ams.org/mathscinet-getitem?mr=1640256. http://www.emis.de/journals/SC/1998/3/pdf/smf_sem-cong_3_69-100.pdf | * Hawkins, Thomas. 1998. “From General Relativity to Group Representations: The Background to Weyl’s Papers of 1925–26.” In Matériaux Pour L’histoire Des Mathématiques Au XX\rm E$ Siècle (Nice, 1996), 3:69–100. Sémin. Congr. Paris: Soc. Math. France. http://www.ams.org/mathscinet-getitem?mr=1640256. http://www.emis.de/journals/SC/1998/3/pdf/smf_sem-cong_3_69-100.pdf | ||
* T. Hawkins [http://books.google.com/books?isbn=978-0-387-98963-1 Emergence of the theory of Lie groups] ISBN 978-0-387-98963-1 Covers the early history of the work by Lie, Killing, Cartan and Weyl, from 1868 to 1926. | * T. Hawkins [http://books.google.com/books?isbn=978-0-387-98963-1 Emergence of the theory of Lie groups] ISBN 978-0-387-98963-1 Covers the early history of the work by Lie, Killing, Cartan and Weyl, from 1868 to 1926. |
2013년 12월 6일 (금) 06:36 판
introduction
19세기 프랑스 군론
- 갈루아
- Jordan
- 클라인과 리
리 군
- Sophus Lie—the precursor of the modern theory of Lie groups.
- Wilhelm Killing, who discovered almost all central concepts and theorems on the structure and classification of semisimple Lie algebras.
- Élie Cartan and is primarily concerned with developments that would now be interpreted as representations of Lie algebras, particularly simple and semisimple algebras.
- Hermann Weyl the development of representation theory of Lie groups and algebras.
development of representation theory of Lie groups
- 1913 Cartan spin representations
- 19?? Weyl unitarian trick : Complete reducibility
- Dynkin, The structure of semi-simple Lie algebras
- amre,math.sco.transl.17
on fraktur
- http://mathoverflow.net/questions/87627/fraktur-symbols-for-lie-algebras-mathfrakg-etc
- The point is that group theory and Lie groups in particular were actively developed by German mathematicians in the nineteenth century; they were not inventing exotic notation when they used these particular letters as symbols
리 타입의 유한군
- 딕슨
- Tits 기하학적 접근
- Chevalley 대수적 접근
- Chevalley integral form
modern development
memo
- history of theory of symmetric polynomials
- the role of invariant theory
articles
- Elie Cartan Sur la structure des groupes de transformations finis et continus Cartan's famous 1894 thesis, cleaning up Killing's work on the classification Lie algebras.
- Wilhelm Killing, "Die Zusammensetzung der stetigen endlichen Transformations-gruppen" 1888-1890 part 1part 2part 3part 4 Killing's classification of simple Lie complex Lie algebras.
- S. Lie, F. Engel "Theorie der transformationsgruppen" 1888 Volume 1Volume 2Volume 3 Lie's monumental summary of his work on Lie groups and algebras.
- Hermann Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. 1925-1926 I, II, III. Weyl's paper on the representations of compact Lie groups, giving the Weyl character formula.
- H. Weyl The classical groups ISBN 978-0-691-05756-9 A classic, describing the representation theory of lie groups and its relation to invariant theory
- Chevalley, On certain simple groups
표준적인 교과서
- J.-P. Serre, Lie algebras and Lie groups ISBN 978-3540550082 Covers most of the basic theory of Lie algebras.
- J.-P. Serre, Complex semisimple Lie algebras ISBN 978-3-540-67827-4 Covers the classification and representation theory of complex Lie algebras.
- N. Jacobson, Lie algebras ISBN 978-0486638324 A good reference for all proofs about finite dimensional Lie algebras
- Claudio Procesi, Lie Groups: An Approach through Invariants and Representations, ISBN 978-0387260402. Similar to the course, with more emphasis on invariant theory.
expository
- Varadarajan, Historical review of Lie Theory
- Hawkins, Thomas. 1998. “From General Relativity to Group Representations: The Background to Weyl’s Papers of 1925–26.” In Matériaux Pour L’histoire Des Mathématiques Au XX\rm E$ Siècle (Nice, 1996), 3:69–100. Sémin. Congr. Paris: Soc. Math. France. http://www.ams.org/mathscinet-getitem?mr=1640256. http://www.emis.de/journals/SC/1998/3/pdf/smf_sem-cong_3_69-100.pdf
- T. Hawkins Emergence of the theory of Lie groups ISBN 978-0-387-98963-1 Covers the early history of the work by Lie, Killing, Cartan and Weyl, from 1868 to 1926.
- A. Borel Essays in the history of Lie groups and algebraic groups ISBN 978-0-8218-0288-5 Covers the history.
- "From Galois and Lie to Tits Buildings", The Coxeter Legacy: Reflections and Projections (ed. C. Davis and E.W. Ellers), Fields Inst. Publications volume 48, American Math. Soc. (2006), 45–62.