"Path integral and moduli space of Riemann surfaces"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
  
<math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos</math>
+
<math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos</math>
  
 
classical
 
classical
7번째 줄: 7번째 줄:
 
<math>\frac{1}{g_{s}^2}Z_{0}</math>
 
<math>\frac{1}{g_{s}^2}Z_{0}</math>
  
other terms : loo (=quantum ) corrections
+
other terms : loop (=quantum ) corrections
 +
 
 +
 
 +
 
 +
 
  
 
 
 
 
14번째 줄: 18번째 줄:
  
 
<math>Z(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})</math>
 
<math>Z(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})</math>
 
 
 
 
 
 
  
 
 
 
 
38번째 줄: 38번째 줄:
  
 
<h5>related items</h5>
 
<h5>related items</h5>
 +
 +
* [[0 modular invariance in math and physics]]
  
 
 
 
 

2011년 10월 22일 (토) 07:26 판

introduction

\(Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos\)

classical

\(\frac{1}{g_{s}^2}Z_{0}\)

other terms : loop (=quantum ) corrections

 

 

 

Scattering amplitude

\(Z(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})\)

 

Polchinski I,5

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links