"Tilting modules for quantum groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
4번째 줄: 4번째 줄:
 
* Weyl modules : quotients of Verma modules
 
* Weyl modules : quotients of Verma modules
 
$$
 
$$
W_{\lambda}=M_{\lambda}/\rm{span}(M_{s_i\cdot \lambda})
+
W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda})
 
$$
 
$$
 
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules
 
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules

2013년 6월 26일 (수) 02:41 판

introduction

  • modules for $U_q(\mathfrak{g})$
  • Verma modules $M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}$
  • Weyl modules : quotients of Verma modules

$$ W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda}) $$

  • a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules