"Tilting modules for quantum groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
7번째 줄: 7번째 줄:
 
$$
 
$$
 
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules
 
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules
 +
 +
 +
==articles==
 +
* Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:[http://dx.doi.org/10.1007/BF02099312 10.1007/BF02099312].

2013년 7월 5일 (금) 07:39 판

introduction

  • modules for $U_q(\mathfrak{g})$
  • Verma modules $M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}$
  • Weyl modules : quotients of Verma modules

$$ W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda}) $$

  • a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules


articles

  • Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:10.1007/BF02099312.