"Complex reflection groups"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 위치를 <a href="/pages/1357714">1 수학</a>페이지로 이동하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>간단한 소개</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 대학원 과목</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 다른 주제들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>표준적인 도서 및 추천도서</h5> | ||
+ | |||
+ | * http://search.gigapedia.com/?q= | ||
+ | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
+ | |||
+ | |||
+ | |||
+ | <h5>위키링크</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | |||
+ | <h5>참고할만한 자료</h5> | ||
+ | |||
On Coxeter Diagrams of complex reflection groups | On Coxeter Diagrams of complex reflection groups | ||
34번째 줄: | 71번째 줄: | ||
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WH2-45B5NX1-K&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=e01e884479d443f48357724a9b672e9f | http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WH2-45B5NX1-K&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=e01e884479d443f48357724a9b672e9f | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>수식표현템플릿</h5> | ||
+ | |||
+ | 수식을 입력하고 싶으면, 아래와 같은 형식의 이미지 주소를 작성, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX) | ||
+ | |||
+ | 수식의 구조는 http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어 | ||
+ | |||
+ | LaTeX 명령어 테스트는 http://www.forkosh.dreamhost.com/source_mimetex.html#preview 에서 할 수 있음. | ||
+ | |||
+ | |||
+ | |||
+ | http://www.sitmo.com/latex/ 에서 수식 이미지를 복사해서 붙여 넣어도 됨. 위 방법과 동일하게 LaTeX 기반. | ||
+ | |||
+ | 수식 이미지 복사는 인터넷 익스플로러에서는 일단 가능한데, 파이어폭스 등의 기타 브라우저에서는 잘 안 되네요. 참고하세요. | ||
+ | |||
+ | |||
+ | |||
+ | LaTeX 명령예 | ||
+ | |||
+ | |||
+ | |||
+ | * <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math> | ||
+ | |||
+ | # x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} | ||
+ | |||
+ | * <math>e^{i \pi} +1 = 0</math> | ||
+ | |||
+ | # e^{i\pi}+1=0 | ||
+ | |||
+ | * <math>2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}</math> | ||
+ | |||
+ | # 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5} | ||
+ | |||
+ | * <math>\frac{\sqrt{3}}{5}</math> | ||
+ | |||
+ | # \frac{\sqrt{3}}{5} | ||
+ | |||
+ | * <math>720\div12=60</math> | ||
+ | |||
+ | # 720\div12=60 | ||
+ | |||
+ | * <math>\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math> | ||
+ | |||
+ | # \large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} | ||
+ | |||
+ | * <math>\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math> | ||
+ | |||
+ | # \Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right) | ||
+ | |||
+ | * <math>\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.</math> | ||
+ | |||
+ | # \LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right. | ||
+ | |||
+ | * <math>\Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}</math> | ||
+ | |||
+ | # \Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\} | ||
+ | |||
+ | * <math>\int e^{-\frac{x^2}{2}} dx</math> | ||
+ | |||
+ | # \int%20e^{-\frac{x^2}{2}}%20dx | ||
+ | |||
+ | <math>e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n</math> | ||
+ | |||
+ | # e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n | ||
+ | |||
+ | * <math>\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}</math> | ||
+ | |||
+ | # \Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array} | ||
+ | |||
+ | * <math>\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math> | ||
+ | |||
+ | # \Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}} | ||
+ | |||
+ | * <math>\normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right)</math> | ||
+ | |||
+ | # \normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right) | ||
+ | |||
+ | |||
+ | |||
+ | * | ||
+ | |||
+ | # \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6} | ||
+ | |||
+ | * | ||
+ | |||
+ | # \int_{a}^{b}f(x)dx=F(b)-F(a) | ||
+ | |||
+ | * | ||
+ | |||
+ | # \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a} | ||
+ | |||
+ | * | ||
+ | |||
+ | # E=-N\frac{d\Phi}{dt} | ||
+ | |||
+ | * | ||
+ | |||
+ | # \mathbf{X}=\left(\begin{array}{ccc}x_{11} & x_{12} & \ldots } & x_{22} & \ldots & \vdots & \ddots\end{array} \right) |
2009년 3월 17일 (화) 20:00 판
간단한 소개
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
관련된 다른 주제들
표준적인 도서 및 추천도서
- http://search.gigapedia.com/?q=
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
위키링크
참고할만한 자료
On Coxeter Diagrams of complex reflection groups
Authors:Tathagata Basak
http://arxiv.org/abs/0809.2427
Title: The complex Lorentzian Leech lattice and the bimonsterAuthors: Tathagata Basak
http://front.math.ucdavis.edu/0508.5228
Title: The complex Lorentzian Leech lattice and the bimonster (II)
Authors: Tathagata Basak
http://front.math.ucdavis.edu/0811.0062
Regular polyhedral groups and reflection groups of rank four
Mitsuo Kato [[1]],a and Jiro Sekiguchi [[2]],b http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDY-4B0WHXW-1&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=188db4d982dbbcd13fb099e37f43bc91
26 Implies the Bimonster*1
John H. Conwaya,1 and Christopher S. Simonsb,2
수식표현템플릿
수식을 입력하고 싶으면, 아래와 같은 형식의 이미지 주소를 작성, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX)
수식의 구조는 http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어
LaTeX 명령어 테스트는 http://www.forkosh.dreamhost.com/source_mimetex.html#preview 에서 할 수 있음.
http://www.sitmo.com/latex/ 에서 수식 이미지를 복사해서 붙여 넣어도 됨. 위 방법과 동일하게 LaTeX 기반.
수식 이미지 복사는 인터넷 익스플로러에서는 일단 가능한데, 파이어폭스 등의 기타 브라우저에서는 잘 안 되네요. 참고하세요.
LaTeX 명령예
- \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
- x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
- \(e^{i \pi} +1 = 0\)
- e^{i\pi}+1=0
- \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\)
- 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
- \(\frac{\sqrt{3}}{5}\)
- \frac{\sqrt{3}}{5}
- \(720\div12=60\)
- 720\div12=60
- \(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\)
- \large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
- \(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\)
- \Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
- \(\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\)
- \LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
- \(\Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}\)
- \Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
- \(\int e^{-\frac{x^2}{2}} dx\)
- \int%20e^{-\frac{x^2}{2}}%20dx
\(e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n\)
- e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
- \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
- \Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}
- \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
- \Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
- \(\normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right)\)
- \normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right)
- \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
- \int_{a}^{b}f(x)dx=F(b)-F(a)
- \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}
- E=-N\frac{d\Phi}{dt}
- \mathbf{X}=\left(\begin{array}{ccc}x_{11} & x_{12} & \ldots } & x_{22} & \ldots & \vdots & \ddots\end{array} \right)