"Complex reflection groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/1357714">1 수학</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 +
<h5>간단한 소개</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 대학원 과목</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 다른 주제들</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>표준적인 도서 및 추천도서</h5>
 +
 +
* http://search.gigapedia.com/?q=
 +
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
 +
 
 +
 +
<h5>위키링크</h5>
 +
 +
* http://en.wikipedia.org/wiki/
 +
 +
<h5>참고할만한 자료</h5>
 +
 
On Coxeter Diagrams of complex reflection groups
 
On Coxeter Diagrams of complex reflection groups
  
34번째 줄: 71번째 줄:
  
 
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WH2-45B5NX1-K&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=e01e884479d443f48357724a9b672e9f
 
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WH2-45B5NX1-K&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=e01e884479d443f48357724a9b672e9f
 +
 +
 
 +
 +
 
 +
 +
<h5>수식표현템플릿</h5>
 +
 +
수식을 입력하고 싶으면, 아래와 같은 형식의 이미지 주소를 작성, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX)
 +
 +
수식의 구조는 http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어
 +
 +
LaTeX 명령어 테스트는 http://www.forkosh.dreamhost.com/source_mimetex.html#preview 에서 할 수 있음.
 +
 +
 
 +
 +
http://www.sitmo.com/latex/ 에서 수식 이미지를 복사해서 붙여 넣어도 됨. 위 방법과 동일하게 LaTeX 기반.
 +
 +
수식 이미지 복사는 인터넷 익스플로러에서는 일단 가능한데, 파이어폭스 등의 기타 브라우저에서는 잘 안 되네요. 참고하세요.
 +
 +
 
 +
 +
LaTeX 명령예
 +
 +
 
 +
 +
* <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
 +
 +
# x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
 +
 +
* <math>e^{i \pi} +1 = 0</math>
 +
 +
# e^{i\pi}+1=0
 +
 +
* <math>2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}</math>
 +
 +
# 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
 +
 +
* <math>\frac{\sqrt{3}}{5}</math>
 +
 +
# \frac{\sqrt{3}}{5}
 +
 +
* <math>720\div12=60</math>
 +
 +
# 720\div12=60
 +
 +
* <math>\large f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math>
 +
 +
# \large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
 +
 +
* <math>\Large A\ =\ \large\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\        \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
 +
 +
# \Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
 +
 +
* <math>\LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.</math>
 +
 +
# \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
 +
 +
* <math>\Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}</math>
 +
 +
# \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
 +
 +
* <math>\int e^{-\frac{x^2}{2}} dx</math>
 +
 +
# \int%20e^{-\frac{x^2}{2}}%20dx
 +
 +
<math>e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n</math>
 +
 +
# e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
 +
 +
* <math>\Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}</math>
 +
 +
# \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
 +
 +
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math>
 +
 +
# \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
 +
 +
* <math>\normalsize        \left(\large\begin{array}{GC+23}        \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\        \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}        \ \left[\begin{array}{CC}        \begin{array}\frac1{E_{\fs{+1}x}}        &-\frac{\nu_{xy}}{E_{\fs{+1}x}}        &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\        -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\        -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&        -\frac{\nu_{zy}}{E_{\fs{+1}z}}        &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\        {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\        &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}        \end{array}\right]        \ \left(\large\begin{array}        \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}        \end{array}\right)</math>
 +
 +
# \normalsize         \left(\large\begin{array}{GC+23}         \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\         \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}         \ \left[\begin{array}{CC}         \begin{array}\frac1{E_{\fs{+1}x}}         &-\frac{\nu_{xy}}{E_{\fs{+1}x}}         &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\         -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\         -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&         -\frac{\nu_{zy}}{E_{\fs{+1}z}}         &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\         {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\         &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}         \end{array}\right]         \ \left(\large\begin{array}         \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}         \end{array}\right)
 +
 +
 
 +
 +
*
 +
 +
# \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
 +
 +
*
 +
 +
# \int_{a}^{b}f(x)dx=F(b)-F(a)
 +
 +
*
 +
 +
# \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}
 +
 +
*  
 +
 +
# E=-N\frac{d\Phi}{dt}
 +
 +
*
 +
 +
# \mathbf{X}=\left(\begin{array}{ccc}x_{11} & x_{12} & \ldots } & x_{22} & \ldots  & \vdots & \ddots\end{array} \right)

2009년 3월 17일 (화) 20:00 판

간단한 소개

 

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

 

표준적인 도서 및 추천도서

 

위키링크
참고할만한 자료

On Coxeter Diagrams of complex reflection groups

Authors:Tathagata Basak

http://arxiv.org/abs/0809.2427

 

Title: The complex Lorentzian Leech lattice and the bimonsterAuthors: Tathagata Basak

http://front.math.ucdavis.edu/0508.5228

 

Title: The complex Lorentzian Leech lattice and the bimonster (II)

Authors: Tathagata Basak

http://front.math.ucdavis.edu/0811.0062

 

Regular polyhedral groups and reflection groups of rank four

Mitsuo Kato [[1]],a and Jiro Sekiguchi [[2]],b http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDY-4B0WHXW-1&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=188db4d982dbbcd13fb099e37f43bc91  

 

26 Implies the Bimonster*1

John H. Conwaya,1 and Christopher S. Simonsb,2

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WH2-45B5NX1-K&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=e01e884479d443f48357724a9b672e9f

 

 

수식표현템플릿

수식을 입력하고 싶으면, 아래와 같은 형식의 이미지 주소를 작성, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX)

수식의 구조는 http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어

LaTeX 명령어 테스트는 http://www.forkosh.dreamhost.com/source_mimetex.html#preview 에서 할 수 있음.

 

http://www.sitmo.com/latex/ 에서 수식 이미지를 복사해서 붙여 넣어도 됨. 위 방법과 동일하게 LaTeX 기반.

수식 이미지 복사는 인터넷 익스플로러에서는 일단 가능한데, 파이어폭스 등의 기타 브라우저에서는 잘 안 되네요. 참고하세요.

 

LaTeX 명령예

 

  • \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
  1. x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
  • \(e^{i \pi} +1 = 0\)
  1. e^{i\pi}+1=0
  • \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\)
  1. 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
  • \(\frac{\sqrt{3}}{5}\)
  1. \frac{\sqrt{3}}{5}
  • \(720\div12=60\)
  1. 720\div12=60
  • \(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\)
  1. \large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
  • \(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\)
  1. \Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
  • \(\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\)
  1. \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
  • \(\Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}\)
  1. \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
  • \(\int e^{-\frac{x^2}{2}} dx\)
  1. \int%20e^{-\frac{x^2}{2}}%20dx

\(e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n\)

  1. e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
  • \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
  1. \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
  • \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
  1. \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
  • \(\normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right)\)
  1. \normalsize         \left(\large\begin{array}{GC+23}         \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\         \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}         \ \left[\begin{array}{CC}         \begin{array}\frac1{E_{\fs{+1}x}}         &-\frac{\nu_{xy}}{E_{\fs{+1}x}}         &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\         -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\         -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&         -\frac{\nu_{zy}}{E_{\fs{+1}z}}         &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\         {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\         &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}         \end{array}\right]         \ \left(\large\begin{array}         \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}         \end{array}\right)

 

  1. \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
  1. \int_{a}^{b}f(x)dx=F(b)-F(a)
  1. \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}
  •  
  1. E=-N\frac{d\Phi}{dt}
  1. \mathbf{X}=\left(\begin{array}{ccc}x_{11} & x_{12} & \ldots } & x_{22} & \ldots & \vdots & \ddots\end{array} \right)