"Umbral moonshine"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 9번째 줄: | 9번째 줄: | ||
** $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$  | ** $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$  | ||
* [[Mathieu moonshine]] corresponds to $k=1$ case  | * [[Mathieu moonshine]] corresponds to $k=1$ case  | ||
| + | * $k=2$ moonshine with $2.M_{12}$  | ||
2013년 8월 5일 (월) 02:05 판
introduction
- $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$
 
$$ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} $$
- properties
- primes dividing $|M_{24}|$
 - $(p+1)|24$
 - $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$
 
 - Mathieu moonshine corresponds to $k=1$ case
 - $k=2$ moonshine with $2.M_{12}$
 
Jacobi form
$\mathcal{N}=4$ super conformal algebra
- $c=6k$, $k\in \mathbb{Z}_{\geq 1}$
 - two types of representations : BPS and non-BPS
 
extremal Jacobi forms
mock modular form
umbral forms
umbral groups
umbral moonshine conjecture
- Quantum black holes, wall crossing and mock modular forms
 - Mathieu moonshine
 - monstrous moonshine
 - Characters of superconformal algebra and mock theta functions
 
computational resource