"Critical phenomena"의 두 판 사이의 차이
39번째 줄: | 39번째 줄: | ||
E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945). | E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945). | ||
− | + | R. M. Tromp, W. Theis, and N. C. Bartelt, “Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction,” Physical Review Letters 77, no. 12 (1996): 2522. | |
2011년 1월 26일 (수) 15:08 판
introduction
In this sense, the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc). Note that the logarithm y=log x obeys y(ax)=y(x) + log a. It is scale invariant with exponent 0 (and a scale-dependent shift.) This is related to the famous formula
limp-->0 (x^p-1)/p = log x
which shows that logs are a special case of power law functions with power 0.
examples
liquid-vapour critical point
paramagnetic-ferromagnetic transition
multicomponent fluids
alloys
superfulids
superconductors
polymers
fully developed turbulence
quark-gluon plasma
early universe
E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945).
R. M. Tromp, W. Theis, and N. C. Bartelt, “Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction,” Physical Review Letters 77, no. 12 (1996): 2522.
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field