"Critical phenomena"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction</h5> | |
* In this sense, '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).''' | * In this sense, '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).''' | ||
11번째 줄: | 11번째 줄: | ||
− | + | ==examples</h5> | |
* liquid-vapour critical point | * liquid-vapour critical point | ||
38번째 줄: | 38번째 줄: | ||
− | + | ==history</h5> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
46번째 줄: | 46번째 줄: | ||
− | + | ==related items</h5> | |
* [[5 conformal field theory(CFT)]] | * [[5 conformal field theory(CFT)]] | ||
66번째 줄: | 66번째 줄: | ||
− | + | ==books</h5> | |
78번째 줄: | 78번째 줄: | ||
− | + | ==expositions</h5> | |
102번째 줄: | 102번째 줄: | ||
− | + | ==question and answers(Math Overflow)</h5> | |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
111번째 줄: | 111번째 줄: | ||
− | + | ==blogs</h5> | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
122번째 줄: | 122번째 줄: | ||
− | + | ==experts on the field</h5> | |
* http://arxiv.org/ | * http://arxiv.org/ | ||
130번째 줄: | 130번째 줄: | ||
− | + | ==links</h5> | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] |
2012년 10월 28일 (일) 12:56 판
==introduction
- In this sense, the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).
- Note that the logarithm y=log x obeys y(ax)=y(x) + log a.
- It is scale invariant with exponent 0 (and a scale-dependent shift.)
- This is related to the famous formula
\(\lim_{p\to 0}\frac{x^p-1}{p} = \log x\)
which shows that logs are a special case of power law functions with power 0. - basics of magnetism
==examples
- liquid-vapour critical point
- paramagnetic-ferromagnetic transition
- multicomponent fluids
- alloys
- superfulids
- superconductors
- polymers
- fully developed turbulence
- quark-gluon plasma
- early universe
E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945).
Tromp, R. M., W. Theis, and N. C. Bartelt. 1996. Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction. Physical Review Letters 77, no. 12: 2522. doi:10.1103/PhysRevLett.77.2522.
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
==expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links