"Critical phenomena"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*   In this sense, '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).'''
+
* '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).'''
 
* Note that the logarithm y=log x obeys y(ax)=y(x) + log a.
 
* Note that the logarithm y=log x obeys y(ax)=y(x) + log a.
 
* It is scale invariant with exponent 0 (and a scale-dependent shift.) 
 
* It is scale invariant with exponent 0 (and a scale-dependent shift.) 
38번째 줄: 38번째 줄:
 
 
 
 
  
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
==related items==
 
 
* [[5 conformal field theory(CFT)]]
 
 
 
 
 
 
 
 
==encyclopedia==
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
  
 
 
 
 
84번째 줄: 47번째 줄:
 
 
 
 
  
 
 
 
==articles==
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:physics]]
 
[[분류:physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2020년 11월 13일 (금) 02:50 판

introduction

  • the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).
  • Note that the logarithm y=log x obeys y(ax)=y(x) + log a.
  • It is scale invariant with exponent 0 (and a scale-dependent shift.) 
  • This is related to the famous formula
    \(\lim_{p\to 0}\frac{x^p-1}{p} = \log x\)
    which shows that logs are a special case of power law functions with power 0.
  • basics of magnetism

 

 

examples

  • liquid-vapour critical point
  • paramagnetic-ferromagnetic transition
  • multicomponent fluids
  • alloys
  • superfulids
  • superconductors
  • polymers
  • fully developed turbulence
  • quark-gluon plasma
  • early universe

 

 

E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945).

Tromp, R. M., W. Theis, and N. C. Bartelt. 1996. Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction. Physical Review Letters 77, no. 12: 2522. doi:10.1103/PhysRevLett.77.2522

 

 

 


 

expositions