"Strange identity of Freudenthal-de Vries"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | * [[Root Systems and Dynkin diagrams]] | ||
+ | * <math>\rho</math> Weyl vector | ||
+ | * Kac book 219p, 221p | ||
+ | * strange formula<br><math>\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math><br> | ||
+ | * very strange formula<br> | ||
+ | * conformal anomaly <br><math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969. | ||
+ | |||
+ | * [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br> | ||
+ | ** John Burn, 2004<br> |
2012년 8월 26일 (일) 17:43 판
- Root Systems and Dynkin diagrams
- \(\rho\) Weyl vector
- Kac book 219p, 221p
- strange formula
\(\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\) - very strange formula
- conformal anomaly
\(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}\)
H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.