"Chern-Simons gauge theory and Witten's invariant"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
7번째 줄: 7번째 줄:
 
* the Chern-Simons action is given by
 
* the Chern-Simons action is given by
 
:<math>S=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{1}{3}A\wedge [A,A])</math>
 
:<math>S=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{1}{3}A\wedge [A,A])</math>
 +
 +
 +
 +
==setting ==
 +
* M : compact oriented 3-manifold
 +
* $G=SU(2)$
 +
* <math>P\to M</math> : principal G-bundle
 +
* $\mathcal{A}_M$ : the space of connections on $P$
 +
** forms an affine space
 +
** can be identified with $\Omega^{1}(M,\mathfrak{g})$, the space of 1-forms on $M$ with values in $\mathfrak{g}$
 +
* $A\in \mathcal{A}_M$ : connections
 +
* <math>F=A\wedge dA+A\wedge A</math>
 +
* <math>\operatorname{det}(I+\frac{iF}{2\pi})= c_0+c_1+c_2</math>
 +
* <math>c_3=A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A</math>
 +
* <math>c_2=\frac{1}{8\pi^2} \operatorname{tr} F\wedge F =dc_3</math>
 +
* <math>\int_M c_3</math>
 +
* [[curvature and parallel transport]]
 +
* [[Chern class]]
 +
* [[vector valued differential forms]]
 +
  
 
==Chern-Simons partition function==
 
==Chern-Simons partition function==
21번째 줄: 41번째 줄:
 
$$
 
$$
 
where the sum is over flat connections $\alpha$
 
where the sum is over flat connections $\alpha$
 +
  
 
==Jones Polynomial==
 
==Jones Polynomial==
27번째 줄: 48번째 줄:
 
where <math>{\operatorname{Tr}(\int_{K} A)}</math> measures the twisting of the connection along the knot
 
where <math>{\operatorname{Tr}(\int_{K} A)}</math> measures the twisting of the connection along the knot
  
 
 
 
 
 
 
== ==
 
 
* [[curvature and parallel transport]]
 
* [[Chern class]]
 
* [[vector valued differential forms]]
 
 
 
 
 
 
 
 
M : threefold
 
 
<math>P\to M</math> : principal G-bundle
 
 
<math>F=A\wedge dA+A\wedge A</math>
 
 
<math>\operatorname{det}(I+\frac{iF}{2\pi})= c_0+c_1+c_2</math>
 
 
<math>c_3=A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A</math>
 
 
<math>c_2=\frac{1}{8\pi^2} \operatorname{tr} F\wedge F =dc_3</math>
 
 
<math>\int_M c_3</math>
 
 
 
 
  
 
 
 
 
  
 
==Morse theory approach==
 
==Morse theory approach==
 
 
* Taubes, Floer interpret the Chern-Simons function as a Morse function on the space of all gauge fields modulo the action of the group of gauge transformations
 
* Taubes, Floer interpret the Chern-Simons function as a Morse function on the space of all gauge fields modulo the action of the group of gauge transformations
 
* analogous to Euler characteristic of a manifold can be computed as the signed count of Morse indices
 
* analogous to Euler characteristic of a manifold can be computed as the signed count of Morse indices
 
 
 
 
 
 
 
 
  
 
==Chern-Simons invariant==
 
==Chern-Simons invariant==
 
 
* [[Chern-Simons invariant]]
 
* [[Chern-Simons invariant]]
  
77번째 줄: 64번째 줄:
  
 
==memo==
 
==memo==
 
 
* [http://www.math.ethz.ch/%7Esalamon/PREPRINTS/loopgroup.pdf Notes on flat connections loop groups]
 
* [http://www.math.ethz.ch/%7Esalamon/PREPRINTS/loopgroup.pdf Notes on flat connections loop groups]
  
 
 
  
 
 
  
 
==history==
 
==history==

2013년 2월 11일 (월) 09:38 판

introduction

  • prototypical example of Topological quantum field theory(TQFT)
  • Witten introduced classical Chern-Simons theory to topology
  • M : 3-manifold
  • Let \(A\) be a SU(2)-connection on the trivial C^2 bundle over S^3
  • $\operatorname{CS}(A)$ denotes the Chern-Simons functional
  • the Chern-Simons action is given by

\[S=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{1}{3}A\wedge [A,A])\]


setting

  • M : compact oriented 3-manifold
  • $G=SU(2)$
  • \(P\to M\) : principal G-bundle
  • $\mathcal{A}_M$ : the space of connections on $P$
    • forms an affine space
    • can be identified with $\Omega^{1}(M,\mathfrak{g})$, the space of 1-forms on $M$ with values in $\mathfrak{g}$
  • $A\in \mathcal{A}_M$ : connections
  • \(F=A\wedge dA+A\wedge A\)
  • \(\operatorname{det}(I+\frac{iF}{2\pi})= c_0+c_1+c_2\)
  • \(c_3=A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A\)
  • \(c_2=\frac{1}{8\pi^2} \operatorname{tr} F\wedge F =dc_3\)
  • \(\int_M c_3\)
  • curvature and parallel transport
  • Chern class
  • vector valued differential forms


Chern-Simons partition function

$$ Z_k(M)=\int e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\ $$ where \(e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\): formal probability measure on the space of all connections, coming from quantum field theory

asymptotic expansion

  • As $k\to \infty$,

$$ Z_k(M)\approx \frac{1}{2}e^{-3\pi i/4}\sum_{\alpha}\sqrt{T_{\alpha}(M)} e^{-2\pi i I_{\alpha}/4} e^{2\pi (k+2) \operatorname{CS}(A)} $$ where the sum is over flat connections $\alpha$


Jones Polynomial

\[\langle K\rangle=\int {\operatorname{Tr}(\int_{K} A)}e^{2\pi i k \operatorname{CS}(A)}DA=(q^{1/2}+q^{-1/2})V(K,q^{-1})\] where \({\operatorname{Tr}(\int_{K} A)}\) measures the twisting of the connection along the knot


 

Morse theory approach

  • Taubes, Floer interpret the Chern-Simons function as a Morse function on the space of all gauge fields modulo the action of the group of gauge transformations
  • analogous to Euler characteristic of a manifold can be computed as the signed count of Morse indices

 

Chern-Simons invariant

 

 

memo


history

 

 

related items

 

encyclopedia


question and answers(Math Overflow)

 

expositions

 

articles

links