"Seiberg-Witten theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
32번째 줄: 32번째 줄:
 
==expositions==
 
==expositions==
 
* Bohn, Michael. 2007. “An introduction to Seiberg-Witten theory on closed 3-manifolds”. <em>0706.3604</em> (6월 25). http://arxiv.org/abs/0706.3604
 
* Bohn, Michael. 2007. “An introduction to Seiberg-Witten theory on closed 3-manifolds”. <em>0706.3604</em> (6월 25). http://arxiv.org/abs/0706.3604
 +
* Nastase
 +
** [http://www.ift.unesp.br/users/nastase/susystrings.pdf Susy, sugra, strings, branes, duality]
 +
** [http://www.ift.unesp.br/users/nastase/duality.pdf Duality]
 +
** [http://www.ift.unesp.br/users/nastase/susy.pdf Supersymmetry in 4d]
 +
** [http://www.ift.unesp.br/users/nastase/sw.pdf Seiberg-Witten theory]
 
* Lerche, W. 1997. “Introduction to Seiberg-Witten Theory and Its Stringy Origin.” Fortschritte Der Physik. Progress of Physics 45 (3-4): 293–340. doi:10.1002/prop.2190450304.
 
* Lerche, W. 1997. “Introduction to Seiberg-Witten Theory and Its Stringy Origin.” Fortschritte Der Physik. Progress of Physics 45 (3-4): 293–340. doi:10.1002/prop.2190450304.
  

2014년 4월 12일 (토) 03:03 판

introduction

  • Vortices and Monopoles and Instantons
  • After describing the gauge theory of Electromagnetism, we shall define the 4-dimensional Seiberg-Witten invariant (sweeping much technical structure under the rug) and discuss its topological properties.
  • Then we'll backtrack and try to see how this physics beast was born.

 

 

4-manifolds

  • 1980's work of M. Freedman gave a new insight in the topological classification of simply connected compact 4-manifolds via their intersection forms
  • S.K. Donaldson succeeded in establishing criteria how the intersection form can prevent a topological 4-manifold from being smoothable


application to 4-manifolds

  • invariants of compact smooth 4-manifolds introduced by Witten (1994)


related items

 


encyclopedia


expositions


articles

  • Seiberg, N., and E. Witten. “Monopole Condensation, And Confinement In N=2 Supersymmetric Yang-Mills Theory.” Nuclear Physics B 426, no. 1 (September 1994): 19–52. doi:10.1016/0550-3213(94)90124-4.
  • Seiberg, N., and E. Witten. “Monopoles, Duality and Chiral Symmetry Breaking in N=2 Supersymmetric QCD.” Nuclear Physics B 431, no. 3 (December 1994): 484–550. doi:10.1016/0550-3213(94)90214-3.