"Simple exclusion process"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* Bethe Ansatz and Exclusion Processes http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=39328&date=2011-02-01
 
* Bethe Ansatz and Exclusion Processes http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=39328&date=2011-02-01
 +
<blockquote>Exclusion processes have been intensively studied for a variety of reasons. It is a simple model of traffic flow, an interacting particle system with one conservation law that can be used to study shocks, and more recently a model for polymers in random media and interface growth. Because of its similarity to quantum spin-1/2 Heisenberg chain, it is plausible to obtain an exact solution to its master equation. This has been achieved by Schutz in the case of totally asymmetric case and Tracy-Widom in general, using a trick known as Bethe Ansatz. These exact solutions lead to a Fredholm determinant formula (Johansson, Tracy-Widom) that can be used to establish a central limit theorem for the corresponding random interface </blockquote>
 
* talk based on '''[TW2007]'''
 
* talk based on '''[TW2007]'''
 +
 +
 +
==key concepts==
 +
===spin chain===
 +
* master equation and the  formalism using the Hamiltonian of the spin chain
 +
* [[Heisenberg spin chain model]] can be viewed as a exclusion process (time evolution)
 +
 +
 +
===critical exponent===
 +
* relaxation time $\tau$ towards equilibrium
 +
* spatial correlation length $\xi$
 +
* dynamical critical exponent $z$ given by $\tau \sim \xi^z$
 +
* for one-dimensional quantum spin chains $\tau \sim L^z$ where $L$ is the length of the spin chain
 +
===Bethe ansatz===
 +
$\tau$ is dominated by the eigenvalue of the Hamiltonian with the smallest real part
 +
* thus the finite size analysis of the Hamiltonian gives
 +
$$
 +
\Re(E_1)\sim \frac{1}{L^z}
 +
$$
 +
* so we need to compute $E_1$ to get $z$
 +
* this is where the [[Bethe ansatz]] comes in
 +
 +
 +
==single species model==
 
* exclusion rule forbids to have more than one particle per site
 
* exclusion rule forbids to have more than one particle per site
 
* The simple exclusion process is a model of a lattice gas with an exclusion principle
 
* The simple exclusion process is a model of a lattice gas with an exclusion principle
 
* a particle can move to a neighboring site, with probability p to right and probability q to left, only if this is empty.
 
* a particle can move to a neighboring site, with probability p to right and probability q to left, only if this is empty.
*  special cases<br>
+
*  special cases
 
** symmetric exclusion process p=q=1/2
 
** symmetric exclusion process p=q=1/2
 
** totally asymmetric exclusion process (TASEP)
 
** totally asymmetric exclusion process (TASEP)
 
+
* particles jumping from left ro right or from right ro left with given probabilities p and q (p+q=1)
particles jumping from left ro right or from right ro left with given probabilities p and q (p+q=1)
 
 
$$x(t)=(x_1,\cdots,x_N)$$
 
$$x(t)=(x_1,\cdots,x_N)$$
 
$$G(x,t)=\text{probability} (x(t)=x | x(0) \text{is distributed according to }g(x) )$$
 
$$G(x,t)=\text{probability} (x(t)=x | x(0) \text{is distributed according to }g(x) )$$
16번째 줄: 40번째 줄:
  
 
 
 
 
==theorem of Tracy-Widom==
+
===Tracy-Widom===
 
* If $G'(x,t)$ is the probability of observing x at time t, starting from y, then $G'(x,t)$ is given by  
 
* If $G'(x,t)$ is the probability of observing x at time t, starting from y, then $G'(x,t)$ is given by  
$$\sum_{\sigma\in S_N}G_{\sigma}(x,t)$ with $G_{\sigma}$$ given by
+
$\sum_{\sigma\in S_N}G_{\sigma}(x,t)$ with $G_{\sigma}$ given by
  
  
  
 
+
==two species model==
 +
* two species asymmetric diffusion model that describes two species and vacancies diffusing asymmetrically on a one-dimensional lattice
 +
* use algebraic Bethe Ansatz
 +
* find the finite-size scaling behavior of the lowest lying eigenstates of the quantum Hamiltonian describing the model and compute the dynamical critical exponent
  
==Bethe ansatz==
 
 
* [[Heisenberg spin chain model]] can be viewed as a exclusion process (time evolution)
 
* [[Bethe ansatz]]
 
  
 
 
 
 
  
 
+
==memo==
 +
* http://www.math.purdue.edu/~ebkaufma/publications.html
  
==history==
 
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
  
 
 
 
 
  
 
==related items==
 
==related items==
 
+
* [[Random matrix]]
 +
* [[Random processes]]
 +
* [[KPZ equation]]
 
* [[Heisenberg spin chain model]]
 
* [[Heisenberg spin chain model]]
* [[total positivity]]
 
* [[KPZ equation]]
 
 
* [[Bethe ansatz]]
 
* [[Bethe ansatz]]
* [[Totally asymmetric diffusion]]
+
* [[Finite size effect]]
 
 
 
 
 
 
 
 
  
65번째 줄: 83번째 줄:
 
 
 
 
  
 
+
==articles==
 +
===multi-species ASEP===
 +
* Wehefritz-Kaufmann, Birgit. 2010. “Dynamical Critical Exponent for Two-species Totally Asymmetric Diffusion on a Ring.” SIGMA. Symmetry, Integrability and Geometry. Methods and Applications 6: Paper 039, 15. doi:http://dx.doi.org//10.3842/SIGMA.2010.039.
 +
* Arita, Chikashi, Atsuo Kuniba, Kazumitsu Sakai, and Tsuyoshi Sawabe. 2009. “Spectrum of a Multi-species Asymmetric Simple Exclusion Process on a Ring.” Journal of Physics A: Mathematical and Theoretical 42 (34) (August 28): 345002. doi:10.1088/1751-8113/42/34/345002.
 +
* Alcaraz, F.C., M. Droz, M. Henkel, and V. Rittenberg. 1994. “Reaction-Diffusion Processes, Critical Dynamics, and Quantum Chains.” Annals of Physics 230 (2) (March): 250–302. doi:10.1006/aphy.1994.1026.
 +
* Alcaraz, Francisco C., and Vladimir Rittenberg. 1993. “Reaction-diffusion Processes as Physical Realizations of Hecke Algebras.” Physics Letters B 314 (3–4) (September 23): 377–380. doi:10.1016/0370-2693(93)91252-I.
 +
* Gwa, Leh-Hun, and Herbert Spohn. 1992. “Bethe Solution for the Dynamical-scaling Exponent of the Noisy Burgers Equation.” Physical Review A 46 (2) (July 15): 844–854. doi:10.1103/PhysRevA.46.844.
 +
 
  
==articles==
+
===single species model===
 +
* Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:[http://dx.doi.org/10.1007/s00220-009-0761-0 10.1007/s00220-009-0761-0].
 +
* '''[TW2007]'''Tracy, Craig A., and Harold Widom. 2008. “Integral Formulas for the Asymmetric Simple Exclusion Process.” Communications in Mathematical Physics 279 (3) (May 1): 815–844. doi:[http://dx.doi.org/10.1007/s00220-008-0443-3 10.1007/s00220-008-0443-3]. http://arxiv.org/abs/0704.2633. 
 +
* Golinelli, O., and K. Mallick. 2007. “Family of Commuting Operators for the Totally Asymmetric Exclusion Process.” Journal of Physics A: Mathematical and Theoretical 40 (22) (June 1): 5795. doi:http://dx.doi.org/10.1088/1751-8113/40/22/003.
 +
* Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:[http://dx.doi.org/10.1007/s002200050027 10.1007/s002200050027].
 +
* Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:[http://dx.doi.org/10.1007/BF02508478 10.1007/BF02508478]. 
 
* Tracy, C. A., and H. Widom. 1996. Proofs of two conjectures related to the thermodynamic Bethe Ansatz. Communications in Mathematical Physics 179, no. 3 (9): 667-680. doi:[http://dx.doi.org/10.1007/BF02100102 10.1007/BF02100102].  
 
* Tracy, C. A., and H. Widom. 1996. Proofs of two conjectures related to the thermodynamic Bethe Ansatz. Communications in Mathematical Physics 179, no. 3 (9): 667-680. doi:[http://dx.doi.org/10.1007/BF02100102 10.1007/BF02100102].  
* Lazarescu, Alexandre, 와/과Kirone Mallick. 2011. “An Exact Formula for the Statistics of the Current in the TASEP with Open Boundaries”. <em>1104.5089</em> (4월 27). http://arxiv.org/abs/1104.5089 .
+
 
* '''[TW2007]'''Tracy, Craig A, and Harold Widom. 2007. Integral Formulas for the Asymmetric Simple Exclusion Process. 0704.2633 (April 19). doi:doi:[http://dx.doi.org/10.1007/s00220-008-0443-3 10.1007/s00220-008-0443-3]. http://arxiv.org/abs/0704.2633. 
 
* Family of Commuting Operators for the Totally Asymmetric Exclusion Process http://arxiv.org/abs/cond-mat/0612351
 
* Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:[http://dx.doi.org/10.1007/BF02508478 10.1007/BF02508478]. 
 
* Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:[http://dx.doi.org/10.1007/s002200050027 10.1007/s002200050027].
 
* Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:[http://dx.doi.org/10.1007/s00220-009-0761-0 10.1007/s00220-009-0761-0].
 
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 8월 16일 (금) 09:04 판

introduction

Exclusion processes have been intensively studied for a variety of reasons. It is a simple model of traffic flow, an interacting particle system with one conservation law that can be used to study shocks, and more recently a model for polymers in random media and interface growth. Because of its similarity to quantum spin-1/2 Heisenberg chain, it is plausible to obtain an exact solution to its master equation. This has been achieved by Schutz in the case of totally asymmetric case and Tracy-Widom in general, using a trick known as Bethe Ansatz. These exact solutions lead to a Fredholm determinant formula (Johansson, Tracy-Widom) that can be used to establish a central limit theorem for the corresponding random interface

  • talk based on [TW2007]


key concepts

spin chain

  • master equation and the formalism using the Hamiltonian of the spin chain
  • Heisenberg spin chain model can be viewed as a exclusion process (time evolution)


critical exponent

  • relaxation time $\tau$ towards equilibrium
  • spatial correlation length $\xi$
  • dynamical critical exponent $z$ given by $\tau \sim \xi^z$
  • for one-dimensional quantum spin chains $\tau \sim L^z$ where $L$ is the length of the spin chain

Bethe ansatz

$\tau$ is dominated by the eigenvalue of the Hamiltonian with the smallest real part

  • thus the finite size analysis of the Hamiltonian gives

$$ \Re(E_1)\sim \frac{1}{L^z} $$

  • so we need to compute $E_1$ to get $z$
  • this is where the Bethe ansatz comes in


single species model

  • exclusion rule forbids to have more than one particle per site
  • The simple exclusion process is a model of a lattice gas with an exclusion principle
  • a particle can move to a neighboring site, with probability p to right and probability q to left, only if this is empty.
  • special cases
    • symmetric exclusion process p=q=1/2
    • totally asymmetric exclusion process (TASEP)
  • particles jumping from left ro right or from right ro left with given probabilities p and q (p+q=1)

$$x(t)=(x_1,\cdots,x_N)$$ $$G(x,t)=\text{probability} (x(t)=x | x(0) \text{is distributed according to }g(x) )$$ $$\frac{d}{dt}G(x,t)= L^{*}G$$ $$G(x,0)=\mathbf{1}(x=y)$$

 

Tracy-Widom

  • If $G'(x,t)$ is the probability of observing x at time t, starting from y, then $G'(x,t)$ is given by

$\sum_{\sigma\in S_N}G_{\sigma}(x,t)$ with $G_{\sigma}$ given by


two species model

  • two species asymmetric diffusion model that describes two species and vacancies diffusing asymmetrically on a one-dimensional lattice
  • use algebraic Bethe Ansatz
  • find the finite-size scaling behavior of the lowest lying eigenstates of the quantum Hamiltonian describing the model and compute the dynamical critical exponent


 

memo


 

related items

 

encyclopedia

 

 

expositions

  • Golinelli, Olivier, and Kirone Mallick. 2006. The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. Journal of Physics A: Mathematical and General 39, no. 41 (10): 12679-12705. doi:10.1088/0305-4470/39/41/S03

 

articles

multi-species ASEP

  • Wehefritz-Kaufmann, Birgit. 2010. “Dynamical Critical Exponent for Two-species Totally Asymmetric Diffusion on a Ring.” SIGMA. Symmetry, Integrability and Geometry. Methods and Applications 6: Paper 039, 15. doi:http://dx.doi.org//10.3842/SIGMA.2010.039.
  • Arita, Chikashi, Atsuo Kuniba, Kazumitsu Sakai, and Tsuyoshi Sawabe. 2009. “Spectrum of a Multi-species Asymmetric Simple Exclusion Process on a Ring.” Journal of Physics A: Mathematical and Theoretical 42 (34) (August 28): 345002. doi:10.1088/1751-8113/42/34/345002.
  • Alcaraz, F.C., M. Droz, M. Henkel, and V. Rittenberg. 1994. “Reaction-Diffusion Processes, Critical Dynamics, and Quantum Chains.” Annals of Physics 230 (2) (March): 250–302. doi:10.1006/aphy.1994.1026.
  • Alcaraz, Francisco C., and Vladimir Rittenberg. 1993. “Reaction-diffusion Processes as Physical Realizations of Hecke Algebras.” Physics Letters B 314 (3–4) (September 23): 377–380. doi:10.1016/0370-2693(93)91252-I.
  • Gwa, Leh-Hun, and Herbert Spohn. 1992. “Bethe Solution for the Dynamical-scaling Exponent of the Noisy Burgers Equation.” Physical Review A 46 (2) (July 15): 844–854. doi:10.1103/PhysRevA.46.844.


single species model

  • Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:10.1007/s00220-009-0761-0.
  • [TW2007]Tracy, Craig A., and Harold Widom. 2008. “Integral Formulas for the Asymmetric Simple Exclusion Process.” Communications in Mathematical Physics 279 (3) (May 1): 815–844. doi:10.1007/s00220-008-0443-3. http://arxiv.org/abs/0704.2633
  • Golinelli, O., and K. Mallick. 2007. “Family of Commuting Operators for the Totally Asymmetric Exclusion Process.” Journal of Physics A: Mathematical and Theoretical 40 (22) (June 1): 5795. doi:http://dx.doi.org/10.1088/1751-8113/40/22/003.
  • Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:10.1007/s002200050027.
  • Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:10.1007/BF02508478
  • Tracy, C. A., and H. Widom. 1996. Proofs of two conjectures related to the thermodynamic Bethe Ansatz. Communications in Mathematical Physics 179, no. 3 (9): 667-680. doi:10.1007/BF02100102.