"Seminar topics on affine Lie algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
11번째 줄: 11번째 줄:
 
===admissible representations===
 
===admissible representations===
 
* Heisenberg or Virasoro?
 
* Heisenberg or Virasoro?
 +
 +
 +
==memo==
 +
* http://books.google.com.au/books?id=_0zyWYJGUakC&printsec=frontcover&dq=Application+of+group+theory+in+physics+and+mathematical+physics&source=bl&ots=q5F83jIVbm&sig=ii3X3aeugpTZMFa1DfiGnPOkPSc&hl=en&ei=1FIwTNiXN5SSjAf_0PCWBg&sa=X&oi=book_result&ct=result&redir_esc=y#v=onepage&q&f=false
  
  

2015년 3월 3일 (화) 16:37 판

Meetings: Thursdays 3-4:30 pm, Priestly Building Seminar Room 67-442

topics

Kac-Moody algebras

affine Lie algerbas as central extensions of loop algerbas

Sugawara construction of Virasoro algebra

integrable highest weight representations of affine Lie algebras

Weyl-Kac character formula and modular transformations

fusion rules and Verlinde formula

vertex operator constructions of basic representations

admissible representations

  • Heisenberg or Virasoro?


memo


links


readings

  • Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:10.1007/BF03025312.
  • Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf