"Kostant partition function"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
13번째 줄: | 13번째 줄: | ||
* Harris, Pamela E., Erik Insko, and Mohamed Omar. “The $q$-Analog of Kostant’s Partition Function and the Highest Root of the Classical Lie Algebras.” arXiv:1508.07934 [math], August 31, 2015. http://arxiv.org/abs/1508.07934. | * Harris, Pamela E., Erik Insko, and Mohamed Omar. “The $q$-Analog of Kostant’s Partition Function and the Highest Root of the Classical Lie Algebras.” arXiv:1508.07934 [math], August 31, 2015. http://arxiv.org/abs/1508.07934. | ||
* lecouvey, Cedric. “Kostka-Foulkes Polynomials Cyclage Graphs and Charge Statistic for the Root System $C_{n}$.” arXiv:math/0310370, October 23, 2003. http://arxiv.org/abs/math/0310370. | * lecouvey, Cedric. “Kostka-Foulkes Polynomials Cyclage Graphs and Charge Statistic for the Root System $C_{n}$.” arXiv:math/0310370, October 23, 2003. http://arxiv.org/abs/math/0310370. | ||
+ | * Lansky, Joshua M. “A Q-Analog of Freudenthal’s Weight Multiplicity Formula.” Indagationes Mathematicae 11, no. 1 (January 1, 2000): 87–94. doi:10.1016/S0019-3577(00)88576-6. | ||
2016년 6월 30일 (목) 19:32 판
introduction
- Kostant’s partition function counts the number of ways to represent a particular vector (weight) as a nonnegative integral sum of positive roots of a Lie algebra.
- For a given weight the q-analog of Kostant’s partition function is a polynomial where the coefficient of $q^k$ is the number of ways the weight can be written as a nonnegative integral sum of exactly $k$ positive roots.
history
- Kostant’s partition function was introduced and studied by F.A. Berezin and I.M. Gelfand (Proc. Moscow Math. Soc. 5 (1956), 311-351) for the case $g=sl(n)$, and by B. Kostant (Trans. Amer. Math. Soc., 93 (1959), 53-73) for arbitrary semi–simple finite dimensional Lie algebra $g$
articles
- Flow polytopes and the Kostant partition function
- Harris, Pamela E., Erik Insko, and Mohamed Omar. “The $q$-Analog of Kostant’s Partition Function and the Highest Root of the Classical Lie Algebras.” arXiv:1508.07934 [math], August 31, 2015. http://arxiv.org/abs/1508.07934.
- lecouvey, Cedric. “Kostka-Foulkes Polynomials Cyclage Graphs and Charge Statistic for the Root System $C_{n}$.” arXiv:math/0310370, October 23, 2003. http://arxiv.org/abs/math/0310370.
- Lansky, Joshua M. “A Q-Analog of Freudenthal’s Weight Multiplicity Formula.” Indagationes Mathematicae 11, no. 1 (January 1, 2000): 87–94. doi:10.1016/S0019-3577(00)88576-6.