"Half-integral weight modular forms"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
+ | <math>\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
<math>\Gamma_0(4)</math> | <math>\Gamma_0(4)</math> | ||
+ | |||
+ | <math>\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}</math> | ||
+ | |||
+ | <math>\sqrt z</math> has branch in <math>(-\pi/2, \pi/2]</math> | ||
+ | |||
+ | |||
+ | |||
+ | Define | ||
+ | |||
+ | <math>j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}</math> for <math>\gamma \in \Gamma_0(4)</math> | ||
2009년 8월 18일 (화) 05:48 판
\(\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}\)
\(\Gamma_0(4)\)
\(\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)
\(\sqrt z\) has branch in \((-\pi/2, \pi/2]\)
Define
\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\) for \(\gamma \in \Gamma_0(4)\)
W. Kohnen, Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271 (1985),
237–268.
Modular functions of one variable VI
Fourier coefficients of modular forms of half-integral weight
Inventiones Mathematicae
Volume 87, Number 2 / 1987년 6월
Henryk Iwaniec