"Half-integral weight modular forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* modular forms of weight 1/2, which were classified by [http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFSerreStark1977 Serre & Stark (1977)]
 
* modular forms of weight 1/2, which were classified by [http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFSerreStark1977 Serre & Stark (1977)]
43번째 줄: 43번째 줄:
 
 
 
 
  
<h5>action</h5>
+
==action</h5>
  
 
For <math>\xi=(\alpha, \phi(z))</math> and function <math>f</math> on the upper half plane
 
For <math>\xi=(\alpha, \phi(z))</math> and function <math>f</math> on the upper half plane
53번째 줄: 53번째 줄:
 
 
 
 
  
<h5>unary theta functions of weight 1/2</h5>
+
==unary theta functions of weight 1/2</h5>
  
 
 
 
 
59번째 줄: 59번째 줄:
 
 
 
 
  
<h5>theta functions of weight 3/2</h5>
+
==theta functions of weight 3/2</h5>
  
 
 
 
 
  
<h5>references</h5>
+
==references</h5>
  
 
* [[3413025/attachments/1586151|serre-stark_1976.pdf]], Modular functions of one variable VI
 
* [[3413025/attachments/1586151|serre-stark_1976.pdf]], Modular functions of one variable VI

2012년 10월 28일 (일) 13:04 판

==introduction

 

 

 

\(\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}\)

 

 

\(\Gamma_0(4)\)

generated by \(-I, T, ST^{-4}S\)

 

Define

\(\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)

\(\sqrt z\) has branch in \((-\pi/2, \pi/2]\)

 

Define

\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\) for \(\gamma \in \Gamma_0(4)\)

 

Check

\(j(\alpha\beta,z)=j(\alpha,\beta z)j(\beta,z)\)

\(j(\gamma, z)^2=\begin{cases} {cz+d} \mbox{ if }d\equiv 1 \pmod{4} \\ -(cz+d) \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)

 

==action

For \(\xi=(\alpha, \phi(z))\) and function \(f\) on the upper half plane

\(f(z)|[\xi]_{k/2}:=f(\alpha z)\phi(z)^{-k}\)

 

 

==unary theta functions of weight 1/2

 

 

==theta functions of weight 3/2

 

==references