"Half-integral weight modular forms"의 두 판 사이의 차이
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==introduction | + | ==introduction== |
* modular forms of weight 1/2, which were classified by [http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFSerreStark1977 Serre & Stark (1977)] | * modular forms of weight 1/2, which were classified by [http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFSerreStark1977 Serre & Stark (1977)] | ||
43번째 줄: | 43번째 줄: | ||
− | ==action | + | ==action== |
For <math>\xi=(\alpha, \phi(z))</math> and function <math>f</math> on the upper half plane | For <math>\xi=(\alpha, \phi(z))</math> and function <math>f</math> on the upper half plane | ||
53번째 줄: | 53번째 줄: | ||
− | ==unary theta functions of weight 1/2 | + | ==unary theta functions of weight 1/2== |
59번째 줄: | 59번째 줄: | ||
− | ==theta functions of weight 3/2 | + | ==theta functions of weight 3/2== |
− | ==references | + | ==references== |
* [[3413025/attachments/1586151|serre-stark_1976.pdf]], Modular functions of one variable VI | * [[3413025/attachments/1586151|serre-stark_1976.pdf]], Modular functions of one variable VI |
2012년 10월 28일 (일) 14:28 판
introduction
- modular forms of weight 1/2, which were classified by Serre & Stark (1977)
\(\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}\)
\(\Gamma_0(4)\)
generated by \(-I, T, ST^{-4}S\)
Define
\(\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)
\(\sqrt z\) has branch in \((-\pi/2, \pi/2]\)
Define
\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\) for \(\gamma \in \Gamma_0(4)\)
Check
\(j(\alpha\beta,z)=j(\alpha,\beta z)j(\beta,z)\)
\(j(\gamma, z)^2=\begin{cases} {cz+d} \mbox{ if }d\equiv 1 \pmod{4} \\ -(cz+d) \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)
action
For \(\xi=(\alpha, \phi(z))\) and function \(f\) on the upper half plane
\(f(z)|[\xi]_{k/2}:=f(\alpha z)\phi(z)^{-k}\)
unary theta functions of weight 1/2
theta functions of weight 3/2
references
- serre-stark_1976.pdf, Modular functions of one variable VI
- Fourier coefficients of modular forms of half-integral weight
- Henryk Iwaniec, Inventiones Mathematicae, Volume 87, Number 2 / 1987년 6월
- Fourier coefficients of modular forms of half-integral weight.
- W. Kohnen, Math. Ann. 271 (1985), 237–268.