"Ring of symmetric functions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
| 1번째 줄: | 1번째 줄: | ||
| + | structure on ring of symmetric functions | ||
| + | |||
| + | |||
| + | # commutative algebra | ||
| + | # cocommutative coalgebra | ||
| + | # antipode involutions | ||
| + | # symmetric bilinear form <,> algebra structure dual to coalgebra structure | ||
| + | # partial order \geq | ||
| + | # lots of bases | ||
| + | |||
| + | |||
| + | |||
| + | 1,2,3 => commutative, cocommutative Hopf algebra, coordinate ring of a commutative group scheme | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | S\otimes \mathbb{Q} is UEA of a Lie algebra | ||
2012년 4월 4일 (수) 10:50 판
structure on ring of symmetric functions
- commutative algebra
- cocommutative coalgebra
- antipode involutions
- symmetric bilinear form <,> algebra structure dual to coalgebra structure
- partial order \geq
- lots of bases
1,2,3 => commutative, cocommutative Hopf algebra, coordinate ring of a commutative group scheme
S\otimes \mathbb{Q} is UEA of a Lie algebra