"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* replace cluster variables by modules
 
* replace cluster variables by modules
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5>notions</h5>
+
==notions</h5>
  
 
* quiver : oriented graph
 
* quiver : oriented graph
22번째 줄: 22번째 줄:
 
 
 
 
  
<h5>Caldero-Chapoton formula</h5>
+
==Caldero-Chapoton formula</h5>
  
 
* CC(V) =\chi_{V}
 
* CC(V) =\chi_{V}
30번째 줄: 30번째 줄:
 
 
 
 
  
<h5>monoidal categorification</h5>
+
==monoidal categorification</h5>
  
 
M : monoidal categorification
 
M : monoidal categorification
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5>periodicity conjecture</h5>
+
==periodicity conjecture</h5>
  
 
* outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams
 
* outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams
72번째 줄: 72번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
80번째 줄: 80번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[quiver representations|Quiver representations]]
 
* [[quiver representations|Quiver representations]]
101번째 줄: 101번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
113번째 줄: 113번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
* Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. <em>1102.1076</em> (2월 5). http://arxiv.org/abs/1102.1076.
 
* Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. <em>1102.1076</em> (2월 5). http://arxiv.org/abs/1102.1076.
143번째 줄: 143번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
152번째 줄: 152번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
163번째 줄: 163번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
171번째 줄: 171번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 13:57 판

==introduction

  • replace cluster variables by modules

 

 

==notions

  • quiver : oriented graph
  • representation of a quiver : collection of vector space and linear maps between them
  • homomorphism of 2 quiver representations
  • path algebra of a quiver
    • given a quiver Q, a path p is a sequence of arrows with some conditions
    • path algebra : set of all k-linear combinations of all paths (including e_i's)
    • p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))
  • quiver representation is in fact, a representaion of path algebra of a quiver

 

 

==Caldero-Chapoton formula

  • CC(V) =\chi_{V}

 

 

==monoidal categorification

M : monoidal categorification

M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if

(i) cluster monomials' of A are the classes of real simple objects of M

(ii) cluster variables' of a (including coefficients) are classes of real prime simple objects

 

 

\prop

Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series

(find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)

Then

(i) each cluster variable of a has positivie Laurent expansion with respect to any cluster

(ii) cluster monomials are linearly independent

 

 

 

==periodicity conjecture

  • outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams

 

 

 

==history

 

 

==related items

 

 

encyclopedia

 

 

==books

 

 

 

==expositions

 

 

articles

 

 

==question and answers(Math Overflow)

 

==blogs

 

 

==experts on the field

 

 

==links