"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
4번째 줄: 4번째 줄:
  
 
   
 
   
 
 
 
==notions==
 
 
* quiver : oriented graph
 
* representation of a quiver : collection of vector space and linear maps between them
 
* homomorphism of 2 quiver representations
 
*  path algebra of a quiver
 
** given a quiver Q, a path p is a sequence of arrows with some conditions
 
** path algebra : set of all k-linear combinations of all paths (including e_i's)
 
** p_1p_2 will correspond to a composition <math>p_2\circ p_1</math> of two maps (<math>U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W</math>)
 
* quiver representation is in fact, a representaion of path algebra of a quiver
 
 
 
 
 
   
 
   
  

2013년 10월 8일 (화) 06:25 판

introduction

  • replace cluster variables by modules



Caldero-Chapoton formula

  • CC(V) =\chi_{V}



monoidal categorification

  • M : monoidal categorification
  • M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if
  1. cluster monomials' of A are the classes of real simple objects of M
  2. cluster variables' of a (including coefficients) are classes of real prime simple objects


proposition

  • Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series, (i.e., find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)
  • Then
  1. each cluster variable of a has positivie Laurent expansion with respect to any cluster
  2. cluster monomials are linearly independent


periodicity conjecture

  • outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams



history



related items



expositions


articles

  • David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
  • Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.
  • Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. 1003.2652 (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
  • Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. math/0604054 (4월 3). http://arxiv.org/abs/math/0604054.
  • Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. math/0410187 (10월 7). http://arxiv.org/abs/math/0410187.