"Ribbon category"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
35번째 줄: 35번째 줄:
  
 
[[분류:quantum groups]]
 
[[분류:quantum groups]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 06:16 판

introduction

  • important class of braided monoidal categories
  • two additional structures
    • duality
    • twist
  • construction of isotopy invariants of knots, links, tangles, whose components are coloured with objects of a ribbon category
defn

A ribbon category is a rigid braided tensor category with functorial isomorphisms $\delta_V : V \simeq V^{**}$ satisfying $$ \begin{aligned} \delta_{V\otimes W} & = \delta_V\otimes \delta_W, \\ \delta_{1} & = \operatorname{id}, \\ \delta_{V^{*}} & = (\delta_V^{*})^{-1} \end{aligned} $$ where for $f\in \operatorname{Hom}(U,V)$, $f^*\in \operatorname{Hom}(V^*,U^*)$

example

category of finite-dimensional representations of the quantum group

  • Bakalov-Kirillov p.34
  • let $\mathfrak{g}$ be a simple Lie algebra
  • non-trivial example of a ribbon category is provided by the category of finite-dimensional representations of the quantum group $U_q(\mathfrak{g})$
  • balancing $\delta_V = q^{2\rho} :V \simeq V^{**}$
  • on a weight vector $v$ of weight $\lambda$, $q^{2\rho}$ acts as a multiplication by $q^{\langle \langle 2\rho, \lambda \rangle \rangle}$
  • we see that $V^{**}\simeq V$ as a vector space, but has a different action of $U_q(\mathfrak{g})$, namely

$$ \pi_{V^{**}}(a) = \pi_{V}(\gamma^2(a))), \, a\in U_q(\mathfrak{g}) $$

  • we have $\gamma^2(a) = q^{2\rho}a q^{-2\rho},\, a\in U_q(\mathfrak{g})$

Drinfeld category

related items