"Nekrasov-Okounkov hook length formula"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==memo== * http://mathoverflow.net/questions/200951/nekrasov-okounkov-hook-length-formula ==articles== * Han, Guo-Niu. ‘The Nekrasov-Okounkov Hook Length Formula: Refinement, Elem...)
 
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory
 +
$$
 +
\prod_{n=1}^{\infty}(1-x^n)^{\beta-1}=\sum_n\sum_{\lambda \vdash n}\sum_{v\in H(\lambda)}(1-\frac{\beta}{h_v^2})x^{|\lambda|}
 +
$$
 +
$h_v$ is the hook of the box $v$ in the Young tableau of $\lambda$.
 +
 +
 
==memo==
 
==memo==
 
* http://mathoverflow.net/questions/200951/nekrasov-okounkov-hook-length-formula
 
* http://mathoverflow.net/questions/200951/nekrasov-okounkov-hook-length-formula

2015년 3월 24일 (화) 19:52 판

introduction

  • expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory

$$ \prod_{n=1}^{\infty}(1-x^n)^{\beta-1}=\sum_n\sum_{\lambda \vdash n}\sum_{v\in H(\lambda)}(1-\frac{\beta}{h_v^2})x^{|\lambda|} $$ $h_v$ is the hook of the box $v$ in the Young tableau of $\lambda$.


memo


articles

  • Han, Guo-Niu. ‘The Nekrasov-Okounkov Hook Length Formula: Refinement, Elementary Proof, Extension and Applications’. arXiv:0805.1398 [math], 9 May 2008. http://arxiv.org/abs/0805.1398.