"Motive"의 두 판 사이의 차이
75번째 줄: | 75번째 줄: | ||
from (separable finit type k-schemes) to category of motives | from (separable finit type k-schemes) to category of motives | ||
− | * Betti cohomology Vec over Q | + | * Betti cohomology Vec over Q (Hodeg structure) |
− | * de Rham cohomology Vec over k | + | * de Rham cohomology Vec over k if char k = 0 (graded vector space) |
− | * if l\neq char(k) etal cohomology vec over \mathbb{Q}_l | + | * if l\neq char(k) etal cohomology vec over \mathbb{Q}_l (Galois representation) |
* crystalline cohomology Vec over \mathbb{Q}_p | * crystalline cohomology Vec over \mathbb{Q}_p | ||
84번째 줄: | 84번째 줄: | ||
(category of motives) can do linear algebra | (category of motives) can do linear algebra | ||
− | \mathbb{Q}-linear \otimes | + | \mathbb{Q}-linear \otimes-category |
+ | |||
+ | |||
+ | |||
+ | bigger picture obtained when we compare cohomologies | ||
+ | |||
+ | Betti <-> de Rham , Hodge theory | ||
+ | |||
+ | crystalline(de Rham) <-> etale, p-adic Hodge theory | ||
+ | |||
+ | |||
+ | |||
+ | What we like in linear algebra : | ||
+ | |||
+ | 1 dimension | ||
+ | |||
+ | 2 f : V\to V, characteristic polynomial | ||
+ | |||
+ | something we don't know : |
2010년 12월 3일 (금) 08:44 판
geometry roughly= cohomology
example
circle S^1
Betti cohomolgy (singular cohomology)
H^0(S^1,Z)=Z
H^1(S^1,Z)=Z
\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1
Betti cohomology is same
H^0(\mathbb{G}_m,Z)=Z
H^1(\mathbb{G}_m,\mathbb{Z})=Z , this is dual to H_1(\mathbb{G}_m,Z) we can call the generator as \(\gamma_0^{\vee}\) where \(\gamma_0\) is the homology generator.
de Rham cohomology
H^0_{dR}(\mathbb{G}_m)=\mathbb{C}
H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}
De Rham isomorphism
H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C} is a perfect pairing
(\gamma,\omega) \to \int_{\gamma}\omega
i.e. H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}
question. under this isomorphism, \frac{dz}{z} = c\times \(\gamma_0^{\vee}\) what is c?
c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i
Etale cohomology
exponential map : \mathbb{C}\to \mathbb{C}^{*}
H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})
Let l be a prime.
H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l}) is a 1-dimensional \mathbb{Q}_{l} vector space on which Gal(\bar{\mathbb{Q}}/\mathbb{Q}) acts.
We get a character called the cyclotomic character.
general picture
k field (Q,F_q,C,\cdots)
from (separable finit type k-schemes) to category of motives
- Betti cohomology Vec over Q (Hodeg structure)
- de Rham cohomology Vec over k if char k = 0 (graded vector space)
- if l\neq char(k) etal cohomology vec over \mathbb{Q}_l (Galois representation)
- crystalline cohomology Vec over \mathbb{Q}_p
(category of motives) can do linear algebra
\mathbb{Q}-linear \otimes-category
bigger picture obtained when we compare cohomologies
Betti <-> de Rham , Hodge theory
crystalline(de Rham) <-> etale, p-adic Hodge theory
What we like in linear algebra :
1 dimension
2 f : V\to V, characteristic polynomial
something we don't know :