"Motive"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
geometry roughly= cohomology
+
geometry roughly= cohomology<br><br>example<br><br>circle S^1<br><br>Betti cohomolgy (singular cohomology)<br><br>$H^0(S^1,Z)=Z$<br><br>$H^1(S^1,Z)=Z$<br><br>$\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0}$same homotopy class as$S^1$<br><br>Betti cohomology is same<br><br>$H^0(\mathbb{G}_m,Z)=Z$<br><br>$H^1(\mathbb{G}_m,\mathbb{Z})=Z$, this is dual to$H_1(\mathbb{G}_m,Z)$we can call the generator as$\gamma_0^{\vee}$where$\gamma_0$is the homology generator.<br><br>de Rham cohomology<br><br>$H^0_{dR}(\mathbb{G}_m)=\mathbb{C}$<br><br>$H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}$<br><br>De Rham isomorphism<br><br>$H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C}$is a perfect pairing<br><br>$(\gamma,\omega) \to \int_{\gamma}\omega$<br><br>i.e.$H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}$<br><br>question. under this isomorphism,$\frac{dz}{z} = c\times \gamma_0^{\vee}$ what is c?<br><br>$c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i$<br><br>Etale cohomology<br><br>exponential map :$\mathbb{C}\to \mathbb{C}^{*}$<br><br>$H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})$<br><br>Let l be a prime.<br><br>$H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l})$is a 1-dimensional$\mathbb{Q}_{l}$vector space on which$Gal(\bar{\mathbb{Q}}/\mathbb{Q})$acts.<br><br>We get a character called the cyclotomic character.<br><br>general picture<br><br>Let k be a field$(Q,F_q,C,\cdots)$<br><br>from (separable finit type k-schemes) to category of motives<br><br>Betti cohomology Vec over Q (Hodeg structure)<br>de Rham cohomology Vec over k if char k = 0 (graded vector space)<br>if$l\neq$char(k) etale cohomology vec over$\mathbb{Q}_l$(Galois representation)<br>crystalline cohomology Vec over$\mathbb{Q}_p$<br><br>(category of motives) can do linear algebra<br><br>$\mathbb{Q}$-linear\otimes$-category<br><br>bigger picture obtained when we compare cohomologies<br><br>Betti <-> de Rham , Hodge theory<br><br>crystalline(de Rham) <-> etale, p-adic Hodge theory<br><br>What we like in linear algebra :<br><br>1 dimension<br><br>2$f : V\to V$, characteristic polynomial<br><br>something we don't know :<br><br>$X over (k = \bar{k}), char(k)\neq 0$<br><br>for all l prime to characteristic,$dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l)$<br><br>We don't know how to show that these numbers are independent of$l$.<br><br>we know that if$X$over$k$is smooth and proper,<br><br>$k=\bar{\mathbb{F}_q}$, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology)<br><br>X smooth, alternating sum of dimension,\sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles)<br><br>ex : elliptic curve<br><br>E : y^2=x^3-Ax-B,\Delta\neq0 , A,B in\mathbb{Q}<br><br>over complex numbers, let\alpha,\betagenerators H_1<br><br>H^0(E,\Omega^1_E) =\mathbb{C}\cdot\frac{dx}{2y}<br><br>\omega_{\alpha}=\int_{\alpha}\frac{dx}{2y},\omega_{\beta}=\int_{\beta}\frac{dx}{2y}\in\mathbb{C}<br><br>These are linearly independent over real numbers so we get a lattice\Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset\mathbb{C}<br><br>\intE(C)\to\mathbb{C}/\Lambdais an isomorphism<br><br>inverse map : Weierstrass\wp-function<br><br>abelian varieties form a\mathbb{Z}-linear category. So take a tensor with\mathbb{Q}<br><br>(abelian varieties)\otimes\mathbb{Q}  = (category of ab. varieties up to isogeny) . these are\mathbb{Q}-linear<br><br>this is inside the category of motives.
 
 
 
 
 
 
example
 
 
 
circle S^1
 
 
 
Betti cohomolgy (singular cohomology)
 
 
 
H^0(S^1,Z)=Z
 
 
 
H^1(S^1,Z)=Z
 
 
 
 
 
 
 
\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1
 
 
 
Betti cohomology is same
 
 
 
H^0(\mathbb{G}_m,Z)=Z
 
 
 
H^1(\mathbb{G}_m,\mathbb{Z})=Z , this is dual to H_1(\mathbb{G}_m,Z) we can call the generator as <math>\gamma_0^{\vee}</math> where <math>\gamma_0</math> is the homology generator.
 
 
 
 
 
 
 
de Rham cohomology
 
 
 
H^0_{dR}(\mathbb{G}_m)=\mathbb{C}
 
 
 
H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}
 
 
 
 
 
 
 
De Rham isomorphism
 
 
 
H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C} is a perfect pairing
 
 
 
(\gamma,\omega) \to \int_{\gamma}\omega
 
 
 
i.e. H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}
 
 
 
 
 
 
 
question. under this isomorphism, \frac{dz}{z} = c\times <math>\gamma_0^{\vee}</math>  what is c?
 
 
 
c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i
 
 
 
 
 
 
 
Etale cohomology
 
 
 
exponential map : \mathbb{C}\to \mathbb{C}^{*}
 
 
 
 
 
 
 
H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})
 
 
 
 
 
 
 
Let l be a prime.
 
 
 
H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l}) is a 1-dimensional \mathbb{Q}_{l} vector space on which Gal(\bar{\mathbb{Q}}/\mathbb{Q}) acts.
 
 
 
We get a character called the cyclotomic character.
 
 
 
 
 
 
 
 
 
 
 
general picture
 
 
 
k field (Q,F_q,C,\cdots)
 
 
 
from (separable finit type k-schemes) to category of motives
 
 
 
* Betti cohomology Vec over Q (Hodeg structure)
 
* de Rham cohomology Vec over k if char k = 0 (graded vector space)
 
* if l\neq char(k) etal cohomology vec over \mathbb{Q}_l (Galois representation)
 
* crystalline cohomology Vec over \mathbb{Q}_p
 
 
 
 
 
 
 
(category of motives) can do linear algebra
 
 
 
\mathbb{Q}-linear \otimes-category
 
 
 
 
 
 
 
bigger picture obtained when we compare cohomologies
 
 
 
Betti <-> de Rham , Hodge theory
 
 
 
crystalline(de Rham) <-> etale, p-adic Hodge theory
 
 
 
 
 
 
 
What we like in linear algebra :
 
 
 
1 dimension
 
 
 
2 f : V\to V, characteristic polynomial
 
 
 
 
 
 
 
something we don't know :
 
 
 
X over (k = \bar{k}), char(k)\neq 0
 
 
 
for all l prime to characteristic, dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l)
 
 
 
We don't know how to show that these numbers are independent of l.
 
 
 
 
 
 
 
we know that if X over k is smooth and proper,
 
 
 
k=\bar{\mathbb{F}_q}, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology)
 
 
 
X smooth, alternating sum of dimension, \sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles)
 
 
 
 
 
 
 
ex : elliptic curve
 
 
 
E : y^2=x^3-Ax-B, \Delta\neq 0 , A,B in \mathbb{Q}
 
 
 
over complex numbers, let \alpha, \beta generators H_1
 
 
 
H^0(E,\Omega^1_E) = \mathbb{C}\cdot \frac{dx}{2y}
 
 
 
\omega_{\alpha}=\int_{\alpha}\frac{dx}{2y}, \omega_{\beta}=\int_{\beta}\frac{dx}{2y} \in \mathbb{C}
 
 
 
These are linearly independent over real numbers so we get a lattice \Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset \mathbb{C}
 
 
 
 
 
 
 
\int E(C)\to \mathbb{C}/\Lambda is an isomorphism
 
 
 
inverse map : Weierstrass \wp-function
 
 
 
 
 
 
 
abelian varieties form a \mathbb{Z}-linear category. So take a tensor with \mathbb{Q}
 
 
 
(abelian varieties)\otimes \mathbb{Q}  = (category of ab. varieties up to isogeny) . these are \mathbb{Q}-linear
 
 
 
this is inside the category of motives.
 
  
 
 
 
 

2011년 11월 10일 (목) 08:25 판

geometry roughly= cohomology

example

circle S^1

Betti cohomolgy (singular cohomology)

$H^0(S^1,Z)=Z$

$H^1(S^1,Z)=Z$

$\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0}$same homotopy class as$S^1$

Betti cohomology is same

$H^0(\mathbb{G}_m,Z)=Z$

$H^1(\mathbb{G}_m,\mathbb{Z})=Z$, this is dual to$H_1(\mathbb{G}_m,Z)$we can call the generator as$\gamma_0^{\vee}$where$\gamma_0$is the homology generator.

de Rham cohomology

$H^0_{dR}(\mathbb{G}_m)=\mathbb{C}$

$H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}$

De Rham isomorphism

$H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C}$is a perfect pairing

$(\gamma,\omega) \to \int_{\gamma}\omega$

i.e.$H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}$

question. under this isomorphism,$\frac{dz}{z} = c\times \gamma_0^{\vee}$ what is c?

$c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i$

Etale cohomology

exponential map :$\mathbb{C}\to \mathbb{C}^{*}$

$H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})$

Let l be a prime.

$H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l})$is a 1-dimensional$\mathbb{Q}_{l}$vector space on which$Gal(\bar{\mathbb{Q}}/\mathbb{Q})$acts.

We get a character called the cyclotomic character.

general picture

Let k be a field$(Q,F_q,C,\cdots)$

from (separable finit type k-schemes) to category of motives

Betti cohomology Vec over Q (Hodeg structure)
de Rham cohomology Vec over k if char k = 0 (graded vector space)
if$l\neq$char(k) etale cohomology vec over$\mathbb{Q}_l$(Galois representation)
crystalline cohomology Vec over$\mathbb{Q}_p$

(category of motives) can do linear algebra

$\mathbb{Q}$-linear\otimes$-category

bigger picture obtained when we compare cohomologies

Betti <-> de Rham , Hodge theory

crystalline(de Rham) <-> etale, p-adic Hodge theory

What we like in linear algebra :

1 dimension

2$f : V\to V$, characteristic polynomial

something we don't know :

$X over (k = \bar{k}), char(k)\neq 0$

for all l prime to characteristic,$dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l)$

We don't know how to show that these numbers are independent of$l$.

we know that if$X$over$k$is smooth and proper,

$k=\bar{\mathbb{F}_q}$, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology)

X smooth, alternating sum of dimension,\sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles)

ex : elliptic curve

E : y^2=x^3-Ax-B,\Delta\neq0 , A,B in\mathbb{Q}

over complex numbers, let\alpha,\betagenerators H_1

H^0(E,\Omega^1_E) =\mathbb{C}\cdot\frac{dx}{2y}

\omega_{\alpha}=\int_{\alpha}\frac{dx}{2y},\omega_{\beta}=\int_{\beta}\frac{dx}{2y}\in\mathbb{C}

These are linearly independent over real numbers so we get a lattice\Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset\mathbb{C}

\intE(C)\to\mathbb{C}/\Lambdais an isomorphism

inverse map : Weierstrass\wp-function

abelian varieties form a\mathbb{Z}-linear category. So take a tensor with\mathbb{Q}

(abelian varieties)\otimes\mathbb{Q}  = (category of ab. varieties up to isogeny) . these are\mathbb{Q}-linear

this is inside the category of motives.

 

 

http://en.wikipedia.org/wiki/Motive_(algebraic_geometry)

 

 

Feynman motive