"Motive"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | geometry roughly= cohomology | + | geometry roughly= cohomology<br><br>example<br><br>circle S^1<br><br>Betti cohomolgy (singular cohomology)<br><br>$H^0(S^1,Z)=Z$<br><br>$H^1(S^1,Z)=Z$<br><br>$\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0}$same homotopy class as$S^1$<br><br>Betti cohomology is same<br><br>$H^0(\mathbb{G}_m,Z)=Z$<br><br>$H^1(\mathbb{G}_m,\mathbb{Z})=Z$, this is dual to$H_1(\mathbb{G}_m,Z)$we can call the generator as$\gamma_0^{\vee}$where$\gamma_0$is the homology generator.<br><br>de Rham cohomology<br><br>$H^0_{dR}(\mathbb{G}_m)=\mathbb{C}$<br><br>$H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}$<br><br>De Rham isomorphism<br><br>$H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C}$is a perfect pairing<br><br>$(\gamma,\omega) \to \int_{\gamma}\omega$<br><br>i.e.$H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}$<br><br>question. under this isomorphism,$\frac{dz}{z} = c\times \gamma_0^{\vee}$ what is c?<br><br>$c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i$<br><br>Etale cohomology<br><br>exponential map :$\mathbb{C}\to \mathbb{C}^{*}$<br><br>$H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})$<br><br>Let l be a prime.<br><br>$H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l})$is a 1-dimensional$\mathbb{Q}_{l}$vector space on which$Gal(\bar{\mathbb{Q}}/\mathbb{Q})$acts.<br><br>We get a character called the cyclotomic character.<br><br>general picture<br><br>Let k be a field$(Q,F_q,C,\cdots)$<br><br>from (separable finit type k-schemes) to category of motives<br><br>Betti cohomology Vec over Q (Hodeg structure)<br>de Rham cohomology Vec over k if char k = 0 (graded vector space)<br>if$l\neq$char(k) etale cohomology vec over$\mathbb{Q}_l$(Galois representation)<br>crystalline cohomology Vec over$\mathbb{Q}_p$<br><br>(category of motives) can do linear algebra<br><br>$\mathbb{Q}$-linear\otimes$-category<br><br>bigger picture obtained when we compare cohomologies<br><br>Betti <-> de Rham , Hodge theory<br><br>crystalline(de Rham) <-> etale, p-adic Hodge theory<br><br>What we like in linear algebra :<br><br>1 dimension<br><br>2$f : V\to V$, characteristic polynomial<br><br>something we don't know :<br><br>$X over (k = \bar{k}), char(k)\neq 0$<br><br>for all l prime to characteristic,$dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l)$<br><br>We don't know how to show that these numbers are independent of$l$.<br><br>we know that if$X$over$k$is smooth and proper,<br><br>$k=\bar{\mathbb{F}_q}$, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology)<br><br>X smooth, alternating sum of dimension,\sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles)<br><br>ex : elliptic curve<br><br>E : y^2=x^3-Ax-B,\Delta\neq0 , A,B in\mathbb{Q}<br><br>over complex numbers, let\alpha,\betagenerators H_1<br><br>H^0(E,\Omega^1_E) =\mathbb{C}\cdot\frac{dx}{2y}<br><br>\omega_{\alpha}=\int_{\alpha}\frac{dx}{2y},\omega_{\beta}=\int_{\beta}\frac{dx}{2y}\in\mathbb{C}<br><br>These are linearly independent over real numbers so we get a lattice\Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset\mathbb{C}<br><br>\intE(C)\to\mathbb{C}/\Lambdais an isomorphism<br><br>inverse map : Weierstrass\wp-function<br><br>abelian varieties form a\mathbb{Z}-linear category. So take a tensor with\mathbb{Q}<br><br>(abelian varieties)\otimes\mathbb{Q} = (category of ab. varieties up to isogeny) . these are\mathbb{Q}-linear<br><br>this is inside the category of motives. |
− | |||
− | |||
− | |||
− | example | ||
− | |||
− | circle S^1 | ||
− | |||
− | Betti cohomolgy (singular cohomology) | ||
− | |||
− | H^0(S^1,Z)=Z | ||
− | |||
− | H^1(S^1,Z)=Z | ||
− | |||
− | |||
− | |||
− | \mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1 | ||
− | |||
− | Betti cohomology is same | ||
− | |||
− | H^0(\mathbb{G}_m,Z)=Z | ||
− | |||
− | H^1(\mathbb{G}_m,\mathbb{Z})=Z , this is dual to H_1(\mathbb{G}_m,Z) we can call the generator as | ||
− | |||
− | |||
− | |||
− | de Rham cohomology | ||
− | |||
− | H^0_{dR}(\mathbb{G}_m)=\mathbb{C} | ||
− | |||
− | H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z} | ||
− | |||
− | |||
− | |||
− | De Rham isomorphism | ||
− | |||
− | H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C} is a perfect pairing | ||
− | |||
− | (\gamma,\omega) \to \int_{\gamma}\omega | ||
− | |||
− | i.e. H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C} | ||
− | |||
− | |||
− | |||
− | question. under this isomorphism, \frac{dz}{z} = c\times | ||
− | |||
− | c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i | ||
− | |||
− | |||
− | |||
− | Etale cohomology | ||
− | |||
− | exponential map : \mathbb{C}\to \mathbb{C}^{*} | ||
− | |||
− | |||
− | |||
− | H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z}) | ||
− | |||
− | |||
− | |||
− | Let l be a prime. | ||
− | |||
− | H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l}) is a 1-dimensional \mathbb{Q}_{l} vector space on which Gal(\bar{\mathbb{Q}}/\mathbb{Q}) acts. | ||
− | |||
− | We get a character called the cyclotomic character. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | general picture | ||
− | |||
− | k field (Q,F_q,C,\cdots) | ||
− | |||
− | from (separable finit type k-schemes) to category of motives | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | (category of motives) can do linear algebra | ||
− | |||
− | \mathbb{Q}-linear \otimes-category | ||
− | |||
− | |||
− | |||
− | bigger picture obtained when we compare cohomologies | ||
− | |||
− | Betti <-> de Rham , Hodge theory | ||
− | |||
− | crystalline(de Rham) <-> etale, p-adic Hodge theory | ||
− | |||
− | |||
− | |||
− | What we like in linear algebra : | ||
− | |||
− | 1 dimension | ||
− | |||
− | 2 f : V\to V, characteristic polynomial | ||
− | |||
− | |||
− | |||
− | something we don't know : | ||
− | |||
− | X over (k = \bar{k}), char(k)\neq 0 | ||
− | |||
− | for all l prime to characteristic, dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) | ||
− | |||
− | We don't know how to show that these numbers are independent of l. | ||
− | |||
− | |||
− | |||
− | we know that if X over k is smooth and proper, | ||
− | |||
− | k=\bar{\mathbb{F}_q}, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology) | ||
− | |||
− | X smooth, alternating sum of dimension, \sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles) | ||
− | |||
− | |||
− | |||
− | ex : elliptic curve | ||
− | |||
− | E : y^2=x^3-Ax-B, \Delta\ | ||
− | |||
− | over complex numbers, let \alpha, \ | ||
− | |||
− | H^0(E,\Omega^1_E) = \mathbb{C}\cdot \frac{dx}{2y} | ||
− | |||
− | \omega_{\alpha}=\int_{\alpha}\frac{dx}{2y}, \omega_{\beta}=\int_{\beta}\frac{dx}{2y} \in \mathbb{C} | ||
− | |||
− | These are linearly independent over real numbers so we get a lattice \Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset \mathbb{C} | ||
− | |||
− | |||
− | |||
− | \ | ||
− | |||
− | inverse map : Weierstrass \wp-function | ||
− | |||
− | |||
− | |||
− | abelian varieties form a \mathbb{Z}-linear category. So take a tensor with \mathbb{Q} | ||
− | |||
− | (abelian varieties)\otimes \mathbb{Q} | ||
− | |||
− | this is inside the category of motives. | ||
2011년 11월 10일 (목) 08:25 판
geometry roughly= cohomology
example
circle S^1
Betti cohomolgy (singular cohomology)
$H^0(S^1,Z)=Z$
$H^1(S^1,Z)=Z$
$\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0}$same homotopy class as$S^1$
Betti cohomology is same
$H^0(\mathbb{G}_m,Z)=Z$
$H^1(\mathbb{G}_m,\mathbb{Z})=Z$, this is dual to$H_1(\mathbb{G}_m,Z)$we can call the generator as$\gamma_0^{\vee}$where$\gamma_0$is the homology generator.
de Rham cohomology
$H^0_{dR}(\mathbb{G}_m)=\mathbb{C}$
$H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}$
De Rham isomorphism
$H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C}$is a perfect pairing
$(\gamma,\omega) \to \int_{\gamma}\omega$
i.e.$H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}$
question. under this isomorphism,$\frac{dz}{z} = c\times \gamma_0^{\vee}$ what is c?
$c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i$
Etale cohomology
exponential map :$\mathbb{C}\to \mathbb{C}^{*}$
$H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})$
Let l be a prime.
$H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l})$is a 1-dimensional$\mathbb{Q}_{l}$vector space on which$Gal(\bar{\mathbb{Q}}/\mathbb{Q})$acts.
We get a character called the cyclotomic character.
general picture
Let k be a field$(Q,F_q,C,\cdots)$
from (separable finit type k-schemes) to category of motives
Betti cohomology Vec over Q (Hodeg structure)
de Rham cohomology Vec over k if char k = 0 (graded vector space)
if$l\neq$char(k) etale cohomology vec over$\mathbb{Q}_l$(Galois representation)
crystalline cohomology Vec over$\mathbb{Q}_p$
(category of motives) can do linear algebra
$\mathbb{Q}$-linear\otimes$-category
bigger picture obtained when we compare cohomologies
Betti <-> de Rham , Hodge theory
crystalline(de Rham) <-> etale, p-adic Hodge theory
What we like in linear algebra :
1 dimension
2$f : V\to V$, characteristic polynomial
something we don't know :
$X over (k = \bar{k}), char(k)\neq 0$
for all l prime to characteristic,$dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l)$
We don't know how to show that these numbers are independent of$l$.
we know that if$X$over$k$is smooth and proper,
$k=\bar{\mathbb{F}_q}$, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology)
X smooth, alternating sum of dimension,\sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles)
ex : elliptic curve
E : y^2=x^3-Ax-B,\Delta\neq0 , A,B in\mathbb{Q}
over complex numbers, let\alpha,\betagenerators H_1
H^0(E,\Omega^1_E) =\mathbb{C}\cdot\frac{dx}{2y}
\omega_{\alpha}=\int_{\alpha}\frac{dx}{2y},\omega_{\beta}=\int_{\beta}\frac{dx}{2y}\in\mathbb{C}
These are linearly independent over real numbers so we get a lattice\Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset\mathbb{C}
\intE(C)\to\mathbb{C}/\Lambdais an isomorphism
inverse map : Weierstrass\wp-function
abelian varieties form a\mathbb{Z}-linear category. So take a tensor with\mathbb{Q}
(abelian varieties)\otimes\mathbb{Q} = (category of ab. varieties up to isogeny) . these are\mathbb{Q}-linear
this is inside the category of motives.
http://en.wikipedia.org/wiki/Motive_(algebraic_geometry)
Feynman motive