"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
** fermion
 
** fermion
 
** hadron
 
** hadron
 
+
* any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift) as a soliton.
 
 
  
 
 
 
 
132번째 줄: 131번째 줄:
  
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
  
 
 
 
 
150번째 줄: 140번째 줄:
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattice]<br>
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattice]<br>
 
** Bill Sutherland, Rocky Mountain J. Math. Volume 8, Number 1-2 (1978), 413-430.
 
** Bill Sutherland, Rocky Mountain J. Math. Volume 8, Number 1-2 (1978), 413-430.
 +
 +
 
  
 
 
 
 
173번째 줄: 165번째 줄:
 
* Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
 
* Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
  
* [[2010년 books and articles|논문정리]]
+
* http://dx.doi.org/10.1216/RMJ-1978-8-1-413
* http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
+
 
* http://www.zentralblatt-math.org/zmath/en/
+
 
* http://pythagoras0.springnote.com/
+
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
+
 
 +
 
 +
<h5>question and answers(Math Overflow)</h5>
 +
 
 +
* http://mathoverflow.net/search?q=
 +
* http://mathoverflow.net/search?q=
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>blogs</h5>
  
* http://www.ams.org/mathscinet
+
*  구글 블로그 검색<br>
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
+
** http://blogsearch.google.com/blogsearch?q=
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
+
** http://blogsearch.google.com/blogsearch?q=
* http://dx.doi.org/10.1216/RMJ-1978-8-1-413
+
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>experts on the field</h5>
 +
 
 +
* http://arxiv.org/
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>links</h5>
 +
 
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* http://functions.wolfram.com/

2011년 1월 12일 (수) 21:11 판

introduction
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
  • numerically (Zabusky & Kruskal 1965).
    • they discovered that solitons of differenct sizes interact cleanly

 

 

meaning of soliton
  • "soliton" is used to describe their particle-like properties
    • boson
    • fermion
    • hadron
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift) as a soliton.

 

 

PDEs

 

 

important techniques

 

 

 

toda lattice solitons

 

 

mathematica code

 

history

 

 

 

하위페이지

 

 

related items

 

 

books

 

 

encyclopedia

 

 

 

expositions

 

 

articles
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links