"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
4번째 줄: 4번째 줄:
 
*  analytically (Korteweg & de Vries, 1895)<br>
 
*  analytically (Korteweg & de Vries, 1895)<br>
 
** modelling of Russell's discovery
 
** modelling of Russell's discovery
 +
** 1-soliton solution
 
*  numerically (Zabusky & Kruskal 1965).<br>
 
*  numerically (Zabusky & Kruskal 1965).<br>
 +
** interaction of two 1-soliton solutions
 
** they discovered that solitons of differenct sizes interact cleanly
 
** they discovered that solitons of differenct sizes interact cleanly
** interaction of two 1-soliton solutions
 
  
 
 
 
 
67번째 줄: 68번째 줄:
 
** [[Hirota bilinear method|Hirota hierarchy]]<br>
 
** [[Hirota bilinear method|Hirota hierarchy]]<br>
 
** [[inverse scattering method]]<br>
 
** [[inverse scattering method]]<br>
 +
** [[Kadometsev-Petviashvii equation (KP equation)|Kadometsev-Petviashvii (KP hierarchy)]]<br>
 
** [[KdV equation]]<br>
 
** [[KdV equation]]<br>
** [[Kadometsev-Petviashvii equation (KP equation)|KP hierarchy]]<br>
 
 
** [[Nonlinear Schrodinger equation]]<br>
 
** [[Nonlinear Schrodinger equation]]<br>
 
** [[quantum sine-Gordon field theory]]<br>
 
** [[quantum sine-Gordon field theory]]<br>

2011년 2월 7일 (월) 04:41 판

introduction
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of differenct sizes interact cleanly

 

 

meaning of soliton
  • "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)

 

 

PDEs

 

 

important techniques

 

 

mathematica code

 

history

 

 

 

하위페이지

 

 

related items

 

 

books

 

 

encyclopedia

 

 

 

expositions

 

 

articles
  • Solitons, Links and Knots
    • Richard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
  • The Symmetries of Solitons
    • Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
  • From Solitons to Knots and Links
    • Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
  • Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links