"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 solitons로 바꾸었습니다.)
53번째 줄: 53번째 줄:
 
==== 하위페이지 ====
 
==== 하위페이지 ====
  
* [[solitons|soliton]]<br>
+
* [[solitons]]<br>
 
** [[Boussinesq equation]]<br>
 
** [[Boussinesq equation]]<br>
 
** [[course design on soliton]]<br>
 
** [[course design on soliton]]<br>
62번째 줄: 62번째 줄:
 
** [[KdV equation]]<br>
 
** [[KdV equation]]<br>
 
** [[0 methods and theory|methods and theory]]<br>
 
** [[0 methods and theory|methods and theory]]<br>
 +
*** [[algebro-geometric method in soliton theory]]<br>
 
*** [[Bäcklund transformation (backlund)]]<br>
 
*** [[Bäcklund transformation (backlund)]]<br>
 
*** [[Tau functions and Bethe ansatz|Bethe ansatz and Tau functions]]<br>
 
*** [[Tau functions and Bethe ansatz|Bethe ansatz and Tau functions]]<br>
67번째 줄: 68번째 줄:
 
*** [[Hirota bilinear method]]<br>
 
*** [[Hirota bilinear method]]<br>
 
*** [[inverse scattering method]]<br>
 
*** [[inverse scattering method]]<br>
*** [[Sato theory|Sato theory and tau functions]]<br>
+
*** [[quantization of solitons and quantum inverse scattering method (QISM)]]<br>
*** [[talk on 'solitons and infinite dimensional Lie algebras'|solitons and infinite dimensional Lie algebra]]<br>
+
*** [[Sato theory]]<br>
 +
*** [[tau functions]]<br>
 
** [[Nonlinear Schrodinger equation]]<br>
 
** [[Nonlinear Schrodinger equation]]<br>
 
** [[quantum sine-Gordon field theory]]<br>
 
** [[quantum sine-Gordon field theory]]<br>
137번째 줄: 139번째 줄:
 
* [http://www.ma.utexas.edu/users/uhlen/solitons/notes.pdf An Introduction to Wave Equations and Solitons] Richard S. Palais
 
* [http://www.ma.utexas.edu/users/uhlen/solitons/notes.pdf An Introduction to Wave Equations and Solitons] Richard S. Palais
 
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
 
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
* Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. 
+
* Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 ]
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattice] Bill Sutherland, Rocky Mountain J. Math. Volume 8, Number 1-2 (1978), 413-430.
 
  
 
 
 
 

2011년 5월 19일 (목) 18:54 판

introduction
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of differenct sizes interact cleanly

 

 

meaning of soliton
  • "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)

 

 

PDEs

 

 

important techniques

 

 

history

 

 

 

하위페이지

 

 

related items

 

 

computational resource

 

 

books

 

 

encyclopedia

 

 

 

expositions

 

 

articles
  • Solitons, Links and KnotsRichard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
  • The Symmetries of SolitonsRichard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
  • From Solitons to Knots and Links Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
  • Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links