"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
imported>Pythagoras0
109번째 줄: 109번째 줄:
 
* Solitons and Nonlinear Wave Equations, R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
 
* Solitons and Nonlinear Wave Equations, R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
 
* [[2010년 books and articles]]
 
* [[2010년 books and articles]]
* http://gigapedia.info/1/soliton
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
  
 
 
 
 
123번째 줄: 116번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Soliton
 
* http://en.wikipedia.org/wiki/Soliton
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
 
 
 
 
 
 
 
 
 
  
135번째 줄: 121번째 줄:
  
 
==expositions==
 
==expositions==
 
+
* Sascha Vongehr [http://physics1.usc.edu/~vongehr/solitons_html/solitons.html Solitons in field theory], 1997
 
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?] Terence Tao, 2008[http://xxx.lanl.gov/abs/q-alg/9712005 ]
 
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?] Terence Tao, 2008[http://xxx.lanl.gov/abs/q-alg/9712005 ]
 
* [http://www.ma.utexas.edu/users/uhlen/solitons/notes.pdf An Introduction to Wave Equations and Solitons] Richard S. Palais
 
* [http://www.ma.utexas.edu/users/uhlen/solitons/notes.pdf An Introduction to Wave Equations and Solitons] Richard S. Palais
 
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
 
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
 
* Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 ]
 
* Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 ]
 
 
 
 
 
  
151번째 줄: 136번째 줄:
 
* [http://dx.doi.org/10.1143/PTPS.94.1%20 From Solitons to Knots and Links] Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
 
* [http://dx.doi.org/10.1143/PTPS.94.1%20 From Solitons to Knots and Links] Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
 
* Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
 
* Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
 
 
* Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
 
* Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
 
 
* Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
 
* Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
 
 
* Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
 
* Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
 
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 http://dx.doi.org/10.1090/S0273-0979-97-00732-5]
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 http://dx.doi.org/10.1090/S0273-0979-97-00732-5]
  
171번째 줄: 152번째 줄:
 
 
 
 
  
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 2월 19일 (화) 09:02 판

introduction

  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of differenct sizes interact cleanly

 

 

meaning of soliton

  • "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)

 

 

PDEs

 

 

important techniques

 

 

history

 

 

 

하위페이지

 

 

related items

 

 

computational resource

 

 

books

 

encyclopedia

 

 

expositions

 

 

articles

  • Solitons, Links and KnotsRichard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
  • The Symmetries of SolitonsRichard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
  • From Solitons to Knots and Links Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
  • Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
  • http://dx.doi.org/10.1090/S0273-0979-97-00732-5

 

 

question and answers(Math Overflow)