"Kac-Wakimoto modules"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
76번째 줄: | 76번째 줄: | ||
* [http://arxiv.org/abs/hep-th/9407057 Integrable highest weight modules over affine superalgebras and number theory]<br> | * [http://arxiv.org/abs/hep-th/9407057 Integrable highest weight modules over affine superalgebras and number theory]<br> | ||
** Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)<br> | ** Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)<br> | ||
− | * | + | * [http://dx.doi.org/10.1007/s002200000315 Integrable highest weight modules over affine superalgebras and Appell’s function]\<br> |
+ | ** Kac V.G., Wakimoto M, Commun. Math. Phys. '''215'''(3), 631–682 (2001)<br> | ||
* Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)]<br> | * Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)]<br> | ||
* Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | * Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | ||
86번째 줄: | 87번째 줄: | ||
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | ||
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | * http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | ||
− | * http://dx.doi.org/ | + | * http://dx.doi.org/10.1007/s002200000315 |
2012년 8월 26일 (일) 11:56 판
introduction
- Lie superalgebras
- \(sl(2|1)\)
history
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
articles
- Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. 53, 125–264 (1984)
[1] [2] [3] - Integrable highest weight modules over affine superalgebras and number theory
- Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
- Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
- Integrable highest weight modules over affine superalgebras and Appell’s function\
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA 85, 4956--4960(1988)MR0949675 (89j:17019)
- Kac, V.G. and Wakimoto, M.: Classification of modular invariant representations of affine algebras. Advanced Ser. Math. Phys. 7, Singapore: World Sci., 1989, pp. 138--177 MR1026952 (91a:17032)
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[4]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1007/s002200000315
experts on the field