"Appell-Lerch sums"의 두 판 사이의 차이
imported>Pythagoras0 잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로) |
imported>Pythagoras0 |
||
154번째 줄: | 154번째 줄: | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:mock modular forms]] | [[분류:mock modular forms]] | ||
+ | [[분류:math]] |
2013년 2월 8일 (금) 14:09 판
introduction
- one way to construct mock theta functions
- characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
- 3rd order mock theta functions
Appell-Lerch sum
Appell–Lerch sums were first studied by Paul Émile Appell (1884) and Mathias Lerch (1892). Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums, and Zwegers used them to show that mock theta functions are essentially mock modular forms.
The Appell–Lerch series is
\(\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}\)
where
\(\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}\)
and
\(\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}\)
The modified series
\[\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2\]
where
\[R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}\]
and y = Im(τ) and
\[E(z) = 2\int_0^ze^{-\pi u^2}\,du\]
satisfies the following transformation properties
\[\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),\]
\[e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).\]
In other words the modified Appell–Lerch series transforms like a modular form with respect to τ. Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
higher level Appell function
- higher-level Appell functions
- a particular instance of indefinite theta series
history
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Appell
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
articles
- Superconformal Algebras and Mock Theta Functions Tohru Eguchi
- Kazuhiro Hikami, 2009
- Some characters of Kac and Wakimoto and nonholomorphic modular functions.
- K. Bringmann and K. Ono, Math. Annalen 345, pages 547-558 (2009)
- Appell-Lerch sums as mock modular forms
- Zwegers, 2008
- Higher String Functions, Higher-Level Appell Functions, and the Logarithmic sℓ︿2k/u(1) CFT Model
- A. M. Semikhatov
- Higher-Level Appell Functions, Modular Transformations, and Characters
- A.M. Semikhatov
- Mock Theta Functions
- Sander Zwegers, 2002
- Integrable highest weight modules over affine superalgebras and Appell’s function
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- N = 2 superconformal minimal models
- Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra
- 1987
- 1987
- On a Function Which Occurs in the Theory of the Structure of Polymers
- C. Truesdell, The Annals of Mathematics, Second Series, Vol. 46, No. 1 (Jan., 1945), pp. 144-157
- C. Truesdell, The Annals of Mathematics, Second Series, Vol. 46, No. 1 (Jan., 1945), pp. 144-157