"Bruhat decomposition"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
<h5>realization of finite type cluster algebra</h5>
 
<h5>realization of finite type cluster algebra</h5>
  
Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.
+
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.
 +
 
 +
 
  
 
 
 
 
112번째 줄: 114번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
 
+
*  Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.<br>
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/

2011년 4월 22일 (금) 05:38 판

introduction

double Bruhat cells

Bruhat order

Weyl group action 

 

The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.

 

 

realization of finite type cluster algebra
  • Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.

 

 

\mathbb{C}[L^{c,c^{-1}}] is a cluster algebra of finite type. It has the same type as Cartan matrix.

 

type A_{n}

(i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)

(ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}

(iii) The exchange relations

x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]} for 1\leq i\leq j-1\leq k\leq l-1\leq n

 

 

  • remark

x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon

 

example

 

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links