"Bruhat decomposition"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
28번째 줄: | 28번째 줄: | ||
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303. | * Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303. | ||
+ | * <math>\mathbb{C}[L^{c,c^{-1}}]</math> is a cluster algebra of finite type. It has the same type as Cartan matrix. | ||
− | + | ===type A_{n}=== | |
− | + | * (i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C) | |
− | + | * (ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \} | |
+ | * (iii) The exchange relations | ||
+ | $$x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]}$$ for $1\leq i\leq j-1\leq k\leq l-1\leq n$ | ||
+ | * remark : $x_{[i,j]}$ corresponds to the diagonal between i and j in the triangulation of regular $(n+3)$-gon | ||
− | + | ==example== | |
+ | * [[double Bruhat cell example]] | ||
− | |||
− | + | ==memo== | |
− | + | * http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==computational resource== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxZzFwSzhRYnRHalE/edit | ||
==related items== | ==related items== | ||
− | + | * [[Total positivity]] | |
− | * | ||
− | |||
− | |||
78번째 줄: | 64번째 줄: | ||
* http://eom.springer.de/b/b017690.htm | * http://eom.springer.de/b/b017690.htm | ||
− | |||
− | |||
==expositions== | ==expositions== | ||
− | * | + | * http://www-math.mit.edu/~gyuri/papers/bru1.pdf |
− | * | + | * http://pages.uoregon.edu/dmoseley/talks/ |
− | * | + | ** [http://pages.uoregon.edu/dmoseley/talks/Lecture14.pdf Double Bruhat Cells] |
+ | ** [http://pages.uoregon.edu/dmoseley/talks/Lecture15.pdf Cluster Structures on Double Bruhat Cells] | ||
* http://math.ucr.edu/home/baez/week186.html | * http://math.ucr.edu/home/baez/week186.html | ||
− | * | + | * http://www.math.harvard.edu/~ryanr/bruhat_row-reduction.pdf |
− | |||
− | |||
98번째 줄: | 81번째 줄: | ||
− | + | ||
==question and answers(Math Overflow)== | ==question and answers(Math Overflow)== | ||
− | |||
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk | * http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk | ||
* http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition | * http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition |
2013년 6월 26일 (수) 13:08 판
introduction
- double Bruhat cells
- Bruhat order
- Weyl group action
- The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.
Bruhat cell
- G=GL_{n}
- B : upper triangular matrices \in G
- B_{_} : lower triangular matrices in G
- W=S_{n} we can think of it as a subgroup of G
- Double cosets \(BwB\) and \(B_{-}wB_{-}\) are called Bruhat cells.
double Bruhat cell (DBC)
- \(G^{u,v} =BuB\cap B_{-}vB_{-}\)
- \(G=\cup_{u,v\in W\times W} G^{u,v}\) (disjoint union)
realization of finite type cluster algebra
- Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.
- \(\mathbb{C}[L^{c,c^{-1}}]\) is a cluster algebra of finite type. It has the same type as Cartan matrix.
type A_{n}
- (i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)
- (ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}
- (iii) The exchange relations
$$x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]}$$ for $1\leq i\leq j-1\leq k\leq l-1\leq n$
- remark : $x_{[i,j]}$ corresponds to the diagonal between i and j in the triangulation of regular $(n+3)$-gon
example
memo
computational resource
encyclopedia
- http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group
- http://eom.springer.de/b/b017690.htm
expositions
- http://www-math.mit.edu/~gyuri/papers/bru1.pdf
- http://pages.uoregon.edu/dmoseley/talks/
- http://math.ucr.edu/home/baez/week186.html
- http://www.math.harvard.edu/~ryanr/bruhat_row-reduction.pdf
articles
- Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.