"Bruhat decomposition"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
28번째 줄: 28번째 줄:
  
 
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.
 
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.
 +
* <math>\mathbb{C}[L^{c,c^{-1}}]</math> is a cluster algebra of finite type. It has the same type as Cartan matrix.
  
 
 
 
 
  
 
+
===type A_{n}===
 
+
* (i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)
<math>\mathbb{C}[L^{c,c^{-1}}]</math> is a cluster algebra of finite type. It has the same type as Cartan matrix.
+
* (ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}
 +
* (iii) The exchange relations
 +
$$x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]}$$ for $1\leq i\leq j-1\leq k\leq l-1\leq n$
 +
* remark : $x_{[i,j]}$ corresponds to the diagonal between i and j in the triangulation of regular $(n+3)$-gon
  
 
 
 
 
  
type A_{n}
+
==example==
 +
* [[double Bruhat cell example]]
  
(i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)
 
  
(ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}
+
==memo==
 
+
* http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/
(iii) The exchange relations
 
 
 
$x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]}$ for $1\leq i\leq j-1\leq k\leq l-1\leq n$
 
 
 
 
 
 
 
 
 
 
 
* remark
 
 
 
x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon
 
 
 
 
 
 
 
==example==
 
  
* [[double Bruhat cell example]]
 
  
 
 
  
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxZzFwSzhRYnRHalE/edit
 
 
 
 
  
 
==related items==
 
==related items==
 
+
* [[Total positivity]]
* http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/
 
 
 
 
 
  
 
 
 
 
78번째 줄: 64번째 줄:
 
* http://eom.springer.de/b/b017690.htm
 
* http://eom.springer.de/b/b017690.htm
  
 
 
 
  
  
 
==expositions==
 
==expositions==
  
* [http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf ][http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf http://www-math.mit.edu/~gyuri/papers/bru1.pdf]
+
* http://www-math.mit.edu/~gyuri/papers/bru1.pdf
* Double Bruhat Cells http://pages.uoregon.edu/dmoseley/talks/Lecture14.pdf
+
* http://pages.uoregon.edu/dmoseley/talks/
* Cluster Structures on Double Bruhat Cells http://pages.uoregon.edu/dmoseley/talks/Lecture15.pdf
+
** [http://pages.uoregon.edu/dmoseley/talks/Lecture14.pdf Double Bruhat Cells]
 +
** [http://pages.uoregon.edu/dmoseley/talks/Lecture15.pdf Cluster Structures on Double Bruhat Cells]
 
* http://math.ucr.edu/home/baez/week186.html
 
* http://math.ucr.edu/home/baez/week186.html
* [http://www.math.harvard.edu/%7Eryanr/bruhat_row-reduction.pdf http://www.math.harvard.edu/~ryanr/bruhat_row-reduction.pdf]
+
* http://www.math.harvard.edu/~ryanr/bruhat_row-reduction.pdf
 
 
 
 
  
 
 
 
 
98번째 줄: 81번째 줄:
  
  
 
+
 
  
 
==question and answers(Math Overflow)==
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
 
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
 
* http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition
 
* http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition

2013년 6월 26일 (수) 13:08 판

introduction

  • double Bruhat cells
  • Bruhat order
  • Weyl group action 
  • The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.


Bruhat cell

  • G=GL_{n}
  • B : upper triangular matrices \in G
  • B_{_} : lower triangular matrices in G
  • W=S_{n} we can think of it as a subgroup of G
  • Double cosets \(BwB\) and \(B_{-}wB_{-}\) are called Bruhat cells.

 

double Bruhat cell (DBC)

  • \(G^{u,v} =BuB\cap B_{-}vB_{-}\)
  • \(G=\cup_{u,v\in W\times W} G^{u,v}\) (disjoint union)

 

 

realization of finite type cluster algebra

  • Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.
  • \(\mathbb{C}[L^{c,c^{-1}}]\) is a cluster algebra of finite type. It has the same type as Cartan matrix.

 

type A_{n}

  • (i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)
  • (ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}
  • (iii) The exchange relations

$$x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]}$$ for $1\leq i\leq j-1\leq k\leq l-1\leq n$

  • remark : $x_{[i,j]}$ corresponds to the diagonal between i and j in the triangulation of regular $(n+3)$-gon

 

example


memo


computational resource

 

related items

 

encyclopedia


expositions

 

articles

  • Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.



question and answers(Math Overflow)