"Torus knots"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
+
==introduction==
  
 
*  torus knot : <math>K_{p,q}</math><br>
 
*  torus knot : <math>K_{p,q}</math><br>
6번째 줄: 6번째 줄:
 
* S^1-bundle over an orbifold
 
* S^1-bundle over an orbifold
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
+
==related items==
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/Torus_knot
 
* http://en.wikipedia.org/wiki/Torus_knot
31번째 줄: 31번째 줄:
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
+
==books==
  
 
+
  
 
* [[2010년 books and articles]]<br>
 
* [[2010년 books and articles]]<br>
44번째 줄: 44번째 줄:
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
  
[[4909919|]]
+
[[4909919|4909919]]
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
==articles==
  
 
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]<br>
 
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]<br>
** R. M. Kashaev and O. Tirkkonen, 2003
+
** R. M. Kashaev and O. Tirkkonen, 2003
  
* [http://dx.doi.org/10.1016/j.physletb.2003.09.007 Torus knot and minimal model]<br>
+
* [http://dx.doi.org/10.1016/j.physletb.2003.09.007 Torus knot and minimal model]<br>
 
**  Kazuhiro Hikami, a and Anatol N. Kirillov, 2003<br>
 
**  Kazuhiro Hikami, a and Anatol N. Kirillov, 2003<br>
  
66번째 줄: 66번째 줄:
 
* http://dx.doi.org/
 
* http://dx.doi.org/
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
86번째 줄: 86번째 줄:
 
* http://ncatlab.org/nlab/show/HomePage
 
* http://ncatlab.org/nlab/show/HomePage
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 25일 (목) 10:08 판

introduction

  • torus knot \[K_{p,q}\]
  • The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
  • Seifert fibered space
  • S^1-bundle over an orbifold



history



related items

encyclopedia



books

4909919



articles



question and answers(Math Overflow)



blogs



experts on the field



links