"Torus knots"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
9번째 줄: 9번째 줄:
  
 
   
 
   
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
   
 
   
  
27번째 줄: 20번째 줄:
  
 
* http://en.wikipedia.org/wiki/Torus_knot
 
* http://en.wikipedia.org/wiki/Torus_knot
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
==books==
 
  
 
   
 
   
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
  
 
   
 
   
 
 
   
 
   
  
 
==articles==
 
==articles==
 
+
* Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]<br>
+
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]
 
** R. M. Kashaev and O. Tirkkonen, 2003
 
** R. M. Kashaev and O. Tirkkonen, 2003
 
+
* [http://dx.doi.org/10.1016/j.physletb.2003.09.007 Torus knot and minimal model]
* [http://dx.doi.org/10.1016/j.physletb.2003.09.007 Torus knot and minimal model]<br>
+
**  Kazuhiro Hikami, a and Anatol N. Kirillov, 2003
**  Kazuhiro Hikami, a and Anatol N. Kirillov, 2003<br>
 
 
 
* http://www.ams.org/mathscinet
 
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
  
 
   
 
   
  
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
*
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:Knot theory]]
 
[[분류:Knot theory]]

2014년 9월 23일 (화) 01:13 판

introduction

  • torus knot \[K_{p,q}\]
  • The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
  • Seifert fibered space
  • S^1-bundle over an orbifold




related items

encyclopedia




articles