"Periods and transcendental number theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 Periods and transcendental number theory로 바꾸었습니다.)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
  
 
 
 
 
9번째 줄: 9번째 줄:
 
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
 
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
  
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers]. Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_(number) Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
+
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers]. Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_%28number%29 Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>
+
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">regulator</h5>
 +
 
 +
*  regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의<br>
 +
 
 +
Abel-Jacobi map은
 +
 
 +
-Chern character map
 +
 
 +
-대수적 정수론의 Dirichlet regulator
 +
 
 +
-arithmetic geometry의 Beilinson regulator / Borel regulator
 +
 
 +
-motivic cohomology의 Hodge realization / de Rham realization
 +
 
 +
-chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)
 +
 
 +
-Poincare dual
 +
 
 +
등으로도 일반화
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
  
 
 
 
 
19번째 줄: 45번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
  
 
* [[2009년 books and articles|찾아볼 수학책]]
 
* [[2009년 books and articles|찾아볼 수학책]]
32번째 줄: 58번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
  
* http://en.wikipedia.org/wiki/Period_(number)
+
* [http://en.wikipedia.org/wiki/Period_%28number%29 http://en.wikipedia.org/wiki/Period_(number)]
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/regulator
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* http://en.wikipedia.org/wiki/
+
* Princeton companion to mathematics(첨부파일로 올릴것)
* Princeton companion to mathematics(첨부파일로 올릴것)<br>
 
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5>
  
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
50번째 줄: 76번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
 
* [http://www.springerlink.com/content/w65r06p4n2311064/ Algebraic values of Schwarz Triangle Functions]<br>
 
* [http://www.springerlink.com/content/w65r06p4n2311064/ Algebraic values of Schwarz Triangle Functions]<br>
 
** Hironori Shiga  and Jürgen Wolfart, 2007
 
** Hironori Shiga  and Jürgen Wolfart, 2007
* [http://people.math.jussieu.fr/~miw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br>
+
* [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br>
 
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br>
 
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br>
 
*  Periods<br>
 
*  Periods<br>
65번째 줄: 91번째 줄:
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://pythagoras0.springnote.com/
* http://math.berkeley.edu/~reb/papers/index.html
+
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
  
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
72번째 줄: 98번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">TeX </h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX </h5>
 
 
<br>
 
 
 
<br>
 
 
 
 
 
 
 
<br>
 

2009년 10월 4일 (일) 03:21 판

introduction

 

http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html

 

This paper – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a théorie de l’ambiguïté. Good to see Albert Lautman receiving a mention.

For those who want something less introductory, on the same day André has deposited Galois theory, motives and transcendental numbers. Lots there about Kontsevich and Zagier’sPeriods, described in their article of that name in Mathematics Unlimited – 2001 and beyond, pages 771-808, unfortunately now no longer available on the Web.

 

 

regulator
  • regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의

Abel-Jacobi map은

-Chern character map

-대수적 정수론의 Dirichlet regulator

-arithmetic geometry의 Beilinson regulator / Borel regulator

-motivic cohomology의 Hodge realization / de Rham realization

-chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)

-Poincare dual

등으로도 일반화

 

 

related items

 

 

books

 

 

encyclopedia

 

blogs

 

articles

 

TeX