"Periods and transcendental number theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
 
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
  
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers]. Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_%28number%29 Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
+
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers].
 +
 
 +
Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_%28number%29 Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
  
 
 
 
 
16번째 줄: 18번째 줄:
  
 
*  regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의<br>
 
*  regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의<br>
*  Abel-Jacobi map<br>
+
*  Abel-Jacobi map의 일반화<br>
 
+
Chern character map<br>
-Chern character map
+
대수적 정수론의 Dirichlet regulator<br>
 
+
arithmetic geometry의 Beilinson regulator / Borel regulator<br>
-대수적 정수론의 Dirichlet regulator
+
motivic cohomology의 Hodge realization / de Rham realization<br>
 
+
chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)<br>
-arithmetic geometry의 Beilinson regulator / Borel regulator
+
Poincare dual<br>
 
 
-motivic cohomology의 Hodge realization / de Rham realization
 
 
 
-chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)
 
 
 
-Poincare dual
 
 
 
등으로도 일반화
 
  
 
 
 
 
39번째 줄: 33번째 줄:
  
 
* [[K-theory]]<br>
 
* [[K-theory]]<br>
 +
* [[Bloch group, K-theory and dilogarithm|K-theory and dilogarithm]]<br>
  
 
 
 
 
53번째 줄: 48번째 줄:
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics(첨부파일로 올릴것)
 
* Princeton companion to mathematics(첨부파일로 올릴것)
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;"></h5>
 

2010년 3월 16일 (화) 10:52 판

introduction

http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html

 

This paper – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a théorie de l’ambiguïté. Good to see Albert Lautman receiving a mention.

For those who want something less introductory, on the same day André has deposited Galois theory, motives and transcendental numbers.

Lots there about Kontsevich and Zagier’sPeriods, described in their article of that name in Mathematics Unlimited – 2001 and beyond, pages 771-808, unfortunately now no longer available on the Web.

 

 

regulator
  • regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의
  • Abel-Jacobi map의 일반화
  • Chern character map
  • 대수적 정수론의 Dirichlet regulator
  • arithmetic geometry의 Beilinson regulator / Borel regulator
  • motivic cohomology의 Hodge realization / de Rham realization
  • chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)
  • Poincare dual

 

 

related items

 

 

encyclopedia