"Derived functor"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: ==introduction== * basic tool to define cohomology theory * extend a left invariant functor to get a derived functor * then we get a cohomology theory * e.g. sheaf cohomology of a top...) |
imported>Pythagoras0 |
||
19번째 줄: | 19번째 줄: | ||
M\mapsto M^{G} | M\mapsto M^{G} | ||
$$ | $$ | ||
+ | |||
+ | |||
+ | ==related items== | ||
+ | * [[Ext functor]] | ||
+ | * [[Free resolutions]] | ||
+ | |||
[[분류:Abstract concepts]] | [[분류:Abstract concepts]] |
2013년 10월 8일 (화) 10:15 판
introduction
- basic tool to define cohomology theory
- extend a left invariant functor to get a derived functor
- then we get a cohomology theory
- e.g. sheaf cohomology of a topological space X with coefficients in a sheaf $\mathcal F$ = the right derived functor of the global section functor
left invariant functors
global section functor
- a functor from sheaves on $X$ to abelian groups defined by
$$ \mathcal F \mapsto H^{0}(X, \mathcal F) $$
invariants
- $G$ : group
- from modules of $G$ to abelian groups
$$ M\mapsto M^{G} $$