"Derived functor"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * basic tool to define cohomology theory * extend a left invariant functor to get a derived functor * then we get a cohomology theory * e.g. sheaf cohomology of a top...)
 
imported>Pythagoras0
19번째 줄: 19번째 줄:
 
M\mapsto M^{G}
 
M\mapsto M^{G}
 
$$
 
$$
 +
 +
 +
==related items==
 +
* [[Ext functor]]
 +
* [[Free resolutions]]
 +
  
 
[[분류:Abstract concepts]]
 
[[분류:Abstract concepts]]

2013년 10월 8일 (화) 10:15 판

introduction

  • basic tool to define cohomology theory
  • extend a left invariant functor to get a derived functor
  • then we get a cohomology theory
  • e.g. sheaf cohomology of a topological space X with coefficients in a sheaf $\mathcal F$ = the right derived functor of the global section functor


left invariant functors

global section functor

  • a functor from sheaves on $X$ to abelian groups defined by

$$ \mathcal F \mapsto H^{0}(X, \mathcal F) $$

invariants

  • $G$ : group
  • from modules of $G$ to abelian groups

$$ M\mapsto M^{G} $$


related items