"Derived functor"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
27번째 줄: | 27번째 줄: | ||
[[분류:Abstract concepts]] | [[분류:Abstract concepts]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 07:12 판
introduction
- basic tool to define cohomology theory
- extend a left invariant functor to get a derived functor
- then we get a cohomology theory
- e.g. sheaf cohomology of a topological space X with coefficients in a sheaf $\mathcal F$ = the right derived functor of the global section functor
left invariant functors
global section functor
- a functor from sheaves on $X$ to abelian groups defined by
$$ \mathcal F \mapsto H^{0}(X, \mathcal F) $$
invariants
- $G$ : group
- from modules of $G$ to abelian groups
$$ M\mapsto M^{G} $$