"Derived functor"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
27번째 줄: 27번째 줄:
  
 
[[분류:Abstract concepts]]
 
[[분류:Abstract concepts]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 07:12 판

introduction

  • basic tool to define cohomology theory
  • extend a left invariant functor to get a derived functor
  • then we get a cohomology theory
  • e.g. sheaf cohomology of a topological space X with coefficients in a sheaf $\mathcal F$ = the right derived functor of the global section functor


left invariant functors

global section functor

  • a functor from sheaves on $X$ to abelian groups defined by

$$ \mathcal F \mapsto H^{0}(X, \mathcal F) $$

invariants

  • $G$ : group
  • from modules of $G$ to abelian groups

$$ M\mapsto M^{G} $$


related items