"Gaussian Orthogonal Ensemble"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: ==computational resource== * https://drive.google.com/file/d/0B8XXo8Tve1cxZEdFLUVsM0hwUWM/view) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * The Gaussian orthogonal ensemble GOE(n) is described by the Gaussian measure with density | ||
+ | :<math> \frac{1}{Z_{\text{GOE}(n)}} e^{- \frac{n}{4} \mathrm{tr} H^2} </math> | ||
+ | on the space of $n\times n$ real symmetric matrices '$H=(H_{ij})$ | ||
+ | * Its distribution is invariant under orthogonal conjugation, and it models Hamiltonians with time-reversal symmetry | ||
+ | |||
+ | |||
==computational resource== | ==computational resource== | ||
* https://drive.google.com/file/d/0B8XXo8Tve1cxZEdFLUVsM0hwUWM/view | * https://drive.google.com/file/d/0B8XXo8Tve1cxZEdFLUVsM0hwUWM/view |
2016년 6월 29일 (수) 00:36 판
introduction
- The Gaussian orthogonal ensemble GOE(n) is described by the Gaussian measure with density
\[ \frac{1}{Z_{\text{GOE}(n)}} e^{- \frac{n}{4} \mathrm{tr} H^2} \] on the space of $n\times n$ real symmetric matrices '$H=(H_{ij})$
- Its distribution is invariant under orthogonal conjugation, and it models Hamiltonians with time-reversal symmetry