"Dwork pencil of quintic threefolds"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 14번째 줄: | 14번째 줄: | ||
==articles==  | ==articles==  | ||
| + | * Shparlinski, Igor E. “On the Density of Integer Points on the Generalised Markoff-Hurwitz and Dwork Hypersurfaces.” arXiv:1404.5866 [math], April 23, 2014. http://arxiv.org/abs/1404.5866.  | ||
* Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.  | * Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.  | ||
* Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.  | * Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.  | ||
2014년 4월 23일 (수) 19:52 판
introduction
- 1,1,27,2875, 698005,
 - On a general quintic threefold $Y\subset \mathbb{P}^4$ there are 2875 lines
 
memo
expositions
- Pandharipande, R., and R. P. Thomas. 2011. “13/2 Ways of Counting Curves.” arXiv:1111.1552 [hep-Th], November. http://arxiv.org/abs/1111.1552.
 - Zagier, https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit
 
articles
- Shparlinski, Igor E. “On the Density of Integer Points on the Generalised Markoff-Hurwitz and Dwork Hypersurfaces.” arXiv:1404.5866 [math], April 23, 2014. http://arxiv.org/abs/1404.5866.
 - Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.
 - Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.