"Virasoro algebra"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
|  (피타고라스님이 이 페이지의 이름을 Virasoro algebra로 바꾸었습니다.) | |||
| 33번째 줄: | 33번째 줄: | ||
| *  Lie algebra of vector fields on the unit circle<br><math>f(z)\frac{d}{dz}</math><br><math>L_n=-z^{n+1}\frac{d}{dz}</math><br> | *  Lie algebra of vector fields on the unit circle<br><math>f(z)\frac{d}{dz}</math><br><math>L_n=-z^{n+1}\frac{d}{dz}</math><br> | ||
| + | *  they satisfy the following relation<br><math>[L_m,L_n]=(m-n)L_{m+n}</math><br> | ||
| + | *  taking a [[central extension of groups and Lie algebras|central extension of lie algebras]], we get the Virasoro algebra<br><math>L_n,n\in \mathbb{Z}</math><br><math>[c,L_n]=0</math><br><math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math><br> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| 60번째 줄: | 58번째 줄: | ||
| − | <h5>unitary  | + | <h5>unitary irreducible representations</h5> | 
| *  They are classified by c>1 and c<1 case.<br> | *  They are classified by c>1 and c<1 case.<br> | ||
| 66번째 줄: | 64번째 줄: | ||
| ** <math>c\geq 1, h \geq 0</math> positive semi-definite | ** <math>c\geq 1, h \geq 0</math> positive semi-definite | ||
| ** <math>0<c<1, h> 0</math> with [[Kac determinant formula|Kac determinant]] condition<br> | ** <math>0<c<1, h> 0</math> with [[Kac determinant formula|Kac determinant]] condition<br> | ||
| − | *** called the discrete series representations | + | *** called the discrete series representations or [[minimal models]] | 
| 72번째 줄: | 70번째 줄: | ||
| − | <h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">affine Lie algebras</h5> | 
| − | + | * a highest weight representation V of an affine Kac-Moody algebra gives unitary representation of the Virasoro algebra | |
| + | * This is because V is a unitary highest weight representation of the AKMA.  | ||
| + | * Read chapter 4 of Kac-Raina on Wedge space | ||
| − | + | ||
| − | + | <h5>character of minimal models</h5> | |
| − | + | [/pages/3003682/attachments/1973999 전체화면_캡처_2009-08-08_오전_60339.jpg] | |
| − | *  | + | * [http://www.springerlink.com/content/an43wt73vpd9c4uw/ Virasoro algebra, Dedekind eta-function and Specialized Macdonald's identities] | 
| − | |||
| − | |||
| 115번째 줄: | 113번째 줄: | ||
| * http://en.wikipedia.org/wiki/Virasoro_algebra | * http://en.wikipedia.org/wiki/Virasoro_algebra | ||
| * http://en.wikipedia.org/wiki/Coset_construction | * http://en.wikipedia.org/wiki/Coset_construction | ||
| + | * [http://eom.springer.de/v/v096710.htm Virasoro algebra] by V. Kac | ||
2010년 5월 12일 (수) 10:44 판
introduction
- Virasoro algebra could be pre-knowledge for the study of CFT
- important results on Virasoro algebra are
 - (i)Kac Determinant Formula
- (ii) discrete series (A. J. Wassermann, Lecture Notes on the Kac-Moody and Virasoro algebras)
- (iii) GKO construction of discrete series (this is added on 22nd of Oct, 2007)
 
unitarity and ghost
- unitarity means the inner product in the space of states is positive definite (or semi-positive definite)
- A state with negative norm is called a ghost.
- If a ghost is found on any level the represetation cannot occur in a unitary theory
central charge and conformal weight
- \(c\) is called the central charge
- \(h\) is sometimes called a conformal dimension or conformal weights
Virasoro algebra
- Lie algebra of vector fields on the unit circle
 \(f(z)\frac{d}{dz}\)
 \(L_n=-z^{n+1}\frac{d}{dz}\)
- they satisfy the following relation
 \([L_m,L_n]=(m-n)L_{m+n}\)
- taking a central extension of lie algebras, we get the Virasoro algebra
 \(L_n,n\in \mathbb{Z}\)
 \([c,L_n]=0\)
 \([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)
Verma module
- start with given c and h
- construct \(M(c,h)\)
 - quotients from the Universal enveloping algebra
- tensor product from the one dimensional Borel subalgebra representations
 
- there exists a unique contravariant hermitian form
- contravariance means
 - \(L_n\) and \(L_{-n}\) act as adjoints to each other, i.e.
 \(<{L_n}v,w>=<w,L_{-n}w>\)
 
- \(L_n\) and \(L_{-n}\) act as adjoints to each other, i.e.
- a natural grading given by the \(L_0\)-eigenvalues
- contains a unique maximal submodule, and its quotient is the unique (up to isomorphism) irreducible representation with highest weight
- When is \(M(c,h)\) unitary?
- to understand the submodules of the Verma module, we refer to Feigin and Fuks.
unitary irreducible representations
- They are classified by c>1 and c<1 case.
 - \(c> 1, h > 0\) positive definite
- \(c\geq 1, h \geq 0\) positive semi-definite
- \(0<c<1, h> 0\) with Kac determinant condition
 - called the discrete series representations or minimal models
 
 
affine Lie algebras
- a highest weight representation V of an affine Kac-Moody algebra gives unitary representation of the Virasoro algebra
- This is because V is a unitary highest weight representation of the AKMA.
- Read chapter 4 of Kac-Raina on Wedge space
character of minimal models
[/pages/3003682/attachments/1973999 전체화면_캡처_2009-08-08_오전_60339.jpg]
No-Ghost theorem
- refer to the No Ghost theorem
관련된 항목들
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Virasoro_algebra
- http://en.wikipedia.org/wiki/Coset_construction
- Virasoro algebra by V. Kac
articles
- Quantum Group Structure of the q-Deformed Virasoro Algebra
 -  
- Haihong Hu
 
-  
- Unitary representations of the Virasoro and super-Virasoro algebras
 -  
- P. Goddard, A. Kent and D. Olive, Comm. Math. Phys. 103, no. 1 (1986), 105–119.
 
-  
- Conformal invariance, unitarity and critical exponents in two dimensions
 - Friedan, D., Qiu, Z. and Shenker, S., Phys. Rev. Lett. 52 (1984) 1575-1578
 
- Verma modules over the Virasoro algebra
 - B.L. Feigin and D.B. Fuchs, Lecture Notes in Math. 1060 (1984), pp. 230–245.
 
- Infinite conformal symmetry in two-dimensional quantum field theory
 - Alexander Belavin, Alexander Polyakov and Alexander Zamolodchikov, Nucl. Phys. B241 (1984) 333–380