"Mathematical Physics by Carl Bender"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 12개는 보이지 않습니다)
4번째 줄: 4번째 줄:
  
 
==lecture 1 perturbation method==
 
==lecture 1 perturbation method==
* solve $x^5+x=1$
+
* solve <math>x^5+x=1</math>
 
===method 1===
 
===method 1===
* try $x^5+\epsilon x=1$
+
* try <math>x^5+\epsilon x=1</math>
* find $x(\epsilon)$ satisfying $x(\epsilon)^5+\epsilon x(\epsilon)=1$
+
* find <math>x(\epsilon)</math> satisfying <math>x(\epsilon)^5+\epsilon x(\epsilon)=1</math>
 
* answer  
 
* answer  
$$x(\epsilon)=1-\frac{\epsilon }{5}-\frac{\epsilon ^2}{25}-\frac{\epsilon ^3}{125}+\frac{21 \epsilon ^5}{15625}+\frac{78 \epsilon ^6}{78125}+\cdots$$
+
:<math>x(\epsilon)=1-\frac{\epsilon }{5}-\frac{\epsilon ^2}{25}-\frac{\epsilon ^3}{125}+\frac{21 \epsilon ^5}{15625}+\frac{78 \epsilon ^6}{78125}+\cdots</math>
* Setting $\epsilon=1$ gives numerical value $0.75\cdots$
+
* Setting <math>\epsilon=1</math> gives numerical value <math>0.75\cdots</math>
  
  
 
===weak coupling approach===
 
===weak coupling approach===
 
* use the similar idea to Feynman diagrams
 
* use the similar idea to Feynman diagrams
* try $\epsilon x^5+ x=1$
+
* try <math>\epsilon x^5+ x=1</math>
 
* we get
 
* we get
$$
+
:<math>
 
x(\epsilon)=1-\epsilon +5 \epsilon ^2-35 \epsilon ^3+285 \epsilon ^4-2530 \epsilon ^5+23751 \epsilon ^6+\cdots
 
x(\epsilon)=1-\epsilon +5 \epsilon ^2-35 \epsilon ^3+285 \epsilon ^4-2530 \epsilon ^5+23751 \epsilon ^6+\cdots
$$
+
</math>
 
* can we get a meaningful number out of this?
 
* can we get a meaningful number out of this?
 
* yes, for example, Pade summation can be used
 
* yes, for example, Pade summation can be used
25번째 줄: 25번째 줄:
  
 
===asymptotics===
 
===asymptotics===
* $f\sim g\, \quad (x\to x_0)$ iff $$\lim_{x\to x_0}\frac{f(x)}{g(x)}=1$$
+
* <math>f\sim g\, \quad (x\to x_0)</math> iff :<math>\lim_{x\to x_0}\frac{f(x)}{g(x)}=1</math>
* apply the method of dominant balance to $\epsilon x^5+ x=1$
+
* apply the method of dominant balance to <math>\epsilon x^5+ x=1</math>
* $x^4\sim -1/\epsilon\, \quad (\epsilon \to 0)$
+
* <math>x^4\sim -1/\epsilon\, \quad (\epsilon \to 0)</math> and thus
* $x\sim \omega/\epsilon^{1/4}\, \quad (\epsilon \to 0)$ where $\omega^4=-1$
+
:<math>x\sim \frac{\omega}{\epsilon^{1/4}}\, \quad (\epsilon \to 0)</math> where <math>\omega^4=-1</math>
 +
* this is the first order approximation and we can have more terms
 +
 
 +
 
 +
==lecture 2==
 +
===second order ordinary differential equation===
 +
* {{수학노트|url=이계_선형_미분방정식}}
 +
* <math>y''+Q(x)y=0</math> Schrodinger equation
 +
* this is a very hard problem to solve
 +
* consider a perturbed equation <math>y''+\epsilon Q(x)y=0</math> so that its unperturbed equation is <math>y''=0</math> with initial conditions <math>y(0)=\alpha, y'(0)=\beta</math>
 +
* take the formal solution <math>y(x)=\sum_{n}a_n(x)\epsilon^n</math> where <math>a_0(x)=\alpha+\beta x</math>
 +
* for it to be a solution, it should satisfy
 +
:<math>
 +
a_n''(x)=-Q(x)a_{n-1}(x)
 +
</math>
 +
for each <math>n>0</math>
 +
* thus we get
 +
:<math>
 +
a_n(x)=-\int_0^x\int_0^t Q(s)a_{n-1}(s)\,ds\,dt
 +
</math>
 +
===eigenvalue problem===
 +
* Schrodinger equation
 +
:<math>
 +
-\left(\frac{d^2}{dx^2} + V(x)\right)\psi=E \psi
 +
</math>
 +
* if <math>V(x)=x^2/4</math>, we get harmonic oscillator
 +
* anharmonic oscillator problem (similar to [[Phi-4 theory]])
 +
:<math>
 +
-\left(\frac{d^2}{dx^2} +x^2/4+x^4/4\right)\psi=E \psi
 +
</math>
 +
* perturbed version
 +
:<math>
 +
 
 +
-\left(\frac{d^2}{dx^2} +x^2/4+\epsilon x^4/4\right)\psi(\epsilon)=E(\epsilon)\psi(\epsilon)
 +
</math>
 +
* <math>E(\epsilon)=\sum_n a_n(x)\epsilon^n</math>
 +
* <math>\psi(\epsilon)=\sum_n \psi_n(x)\epsilon^n</math>
 +
* ground state <math>\psi_0(x)=e^{-x^2/2}</math> with <math>a_0=1/2</math>
 +
===Riemann surface and discrete spectrum===
 +
* analytic continuation using the parameter <math>\epsilon</math> gives all the energy states
 +
* they correspond to different sheets of a Riemann surface
 +
 
 +
 
 +
==lecture 3==
 +
* Shanks transform for alternating series
 +
* two examples
 +
 
 +
 
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxTmdLemI1MS1XQzQ/edit
  
  
35번째 줄: 84번째 줄:
  
 
[[분류:talks and lecture notes]]
 
[[분류:talks and lecture notes]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 09:05 기준 최신판

list


lecture 1 perturbation method

  • solve \(x^5+x=1\)

method 1

  • try \(x^5+\epsilon x=1\)
  • find \(x(\epsilon)\) satisfying \(x(\epsilon)^5+\epsilon x(\epsilon)=1\)
  • answer

\[x(\epsilon)=1-\frac{\epsilon }{5}-\frac{\epsilon ^2}{25}-\frac{\epsilon ^3}{125}+\frac{21 \epsilon ^5}{15625}+\frac{78 \epsilon ^6}{78125}+\cdots\]

  • Setting \(\epsilon=1\) gives numerical value \(0.75\cdots\)


weak coupling approach

  • use the similar idea to Feynman diagrams
  • try \(\epsilon x^5+ x=1\)
  • we get

\[ x(\epsilon)=1-\epsilon +5 \epsilon ^2-35 \epsilon ^3+285 \epsilon ^4-2530 \epsilon ^5+23751 \epsilon ^6+\cdots \]

  • can we get a meaningful number out of this?
  • yes, for example, Pade summation can be used


asymptotics

  • \(f\sim g\, \quad (x\to x_0)\) iff \[\lim_{x\to x_0}\frac{f(x)}{g(x)}=1\]
  • apply the method of dominant balance to \(\epsilon x^5+ x=1\)
  • \(x^4\sim -1/\epsilon\, \quad (\epsilon \to 0)\) and thus

\[x\sim \frac{\omega}{\epsilon^{1/4}}\, \quad (\epsilon \to 0)\] where \(\omega^4=-1\)

  • this is the first order approximation and we can have more terms


lecture 2

second order ordinary differential equation

  • 틀:수학노트
  • \(y''+Q(x)y=0\) Schrodinger equation
  • this is a very hard problem to solve
  • consider a perturbed equation \(y''+\epsilon Q(x)y=0\) so that its unperturbed equation is \(y''=0\) with initial conditions \(y(0)=\alpha, y'(0)=\beta\)
  • take the formal solution \(y(x)=\sum_{n}a_n(x)\epsilon^n\) where \(a_0(x)=\alpha+\beta x\)
  • for it to be a solution, it should satisfy

\[ a_n''(x)=-Q(x)a_{n-1}(x) \] for each \(n>0\)

  • thus we get

\[ a_n(x)=-\int_0^x\int_0^t Q(s)a_{n-1}(s)\,ds\,dt \]

eigenvalue problem

  • Schrodinger equation

\[ -\left(\frac{d^2}{dx^2} + V(x)\right)\psi=E \psi \]

  • if \(V(x)=x^2/4\), we get harmonic oscillator
  • anharmonic oscillator problem (similar to Phi-4 theory)

\[ -\left(\frac{d^2}{dx^2} +x^2/4+x^4/4\right)\psi=E \psi \]

  • perturbed version

\[ -\left(\frac{d^2}{dx^2} +x^2/4+\epsilon x^4/4\right)\psi(\epsilon)=E(\epsilon)\psi(\epsilon) \]

  • \(E(\epsilon)=\sum_n a_n(x)\epsilon^n\)
  • \(\psi(\epsilon)=\sum_n \psi_n(x)\epsilon^n\)
  • ground state \(\psi_0(x)=e^{-x^2/2}\) with \(a_0=1/2\)

Riemann surface and discrete spectrum

  • analytic continuation using the parameter \(\epsilon\) gives all the energy states
  • they correspond to different sheets of a Riemann surface


lecture 3

  • Shanks transform for alternating series
  • two examples


computational resource


books

  • Bender, Carl M., and Steven A. Orszag. 1999. Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer.