"Appell-Lerch sums"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 25개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]). Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums, and Zwegers used them to show that mock theta functions are essentially mock modular forms.
+
* one way to construct mock theta functions
 +
* characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
 +
* [[3rd order mock theta functions]]
  
 
+
  
The Appell–Lerch series is
+
 
 
 
 
 
 
: <math>\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}</math>
 
 
 
 
 
  
 +
==Appell-Lerch sum==
 +
* Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]).
 +
* Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
 +
* Zwegers used them to show that mock theta functions are essentially mock modular forms.
 +
* The Appell–Lerch series is
 +
:<math>
 +
\mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}
 +
</math>
 
where
 
where
 
+
:<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
 
 
 
 
: <math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
 
 
 
 
 
 
 
 
and
 
and
 
+
:<math>\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math>
 
+
===completion by adding a non-holomorphic part===
 
+
* definte <math>\hat\mu(u,v;\tau)</math> by
: <math>\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}.</math>
+
:<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
 
 
 
 
 
 
The modified series
 
 
 
 
 
 
 
: <math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
 
 
 
 
 
 
 
 
where
 
where
 +
:<math>R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
 +
and <math>y=\Im(\tau)</math> and
 +
:<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
  
 
 
 
: <math>R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
 
 
 
 
  
and <em style="">y</em> = Im(τ) and
+
===Mordell integral===
 +
* [[Mordell integrals]]
 +
:<math>
 +
\mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau)
 +
</math>
 +
where
 +
:<math>M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx</math>
 +
* non-holomorpic part is an incomplete period integral of the modular form <math>\eta^3</math>
 +
:<math>
 +
iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz
 +
</math>
 +
* property
 +
:<math>
 +
R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau)
 +
</math>
  
 
 
  
: <math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
 
  
 
+
===modularity===
 +
:<math>\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),</math>
 +
:<math>e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).</math>
 +
* In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
 +
* Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
  
satisfies the following transformation properties
 
  
 
+
===special case===
 +
* mock theta function
 +
:<math>
 +
\mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}}
 +
</math>
 +
* Mordell integrals
 +
:<math>
 +
\mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx
 +
</math>
  
: <math>\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),</math>
+
* completion
 +
:<math>
 +
\hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2
 +
</math>
 +
* modularity
 +
:<math>
 +
\hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau)
 +
</math>
  
 
+
==higher level Appell function==
  
: <math>e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).</math>
+
*  higher-level Appell functions
 +
** a particular instance of indefinite theta series
  
 
+
  
In other words the modified Appell–Lerch series transforms like a modular form with respect to τ. Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
+
  
 
+
==history==
 
 
 
 
 
 
<h5>history</h5>
 
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
 
 
 
 
 
<h5>related items</h5>
 
 
*  
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
* [[4909919|찾아볼 수학책]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
<h5>encyclopedia</h5>
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
<h5>articles</h5>
 
 
 
 
  
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
  
 
+
  
 
+
==related items==
  
<h5>experts on the field</h5>
+
* [[Kac-Wakimoto modules]]
 +
* [[indefinite theta functions]]
 +
* [[Mathieu moonshine]]
  
* http://arxiv.org/
 
  
 
 
  
 
+
==encyclopedia==
 +
* http://en.wikipedia.org/wiki/Appell
  
<h5>TeX </h5>
+
 +
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==articles==
 +
* Mortenson, Eric. 2012. “On the Dual Nature of Partial Theta Functions and Appell-Lerch Sums.” arXiv:1208.6316 [math], August. http://arxiv.org/abs/1208.6316.
 +
* Tohru Eguchi and Kazuhiro Hikami [http://dx.doi.org/10.1088/1751-8113/42/30/304010 Superconformal Algebras and Mock Theta Functions], 2009
 +
* [http://www.math.wisc.edu/~ono/reprints/122.pdf Some characters of Kac and Wakimoto and nonholomorphic modular functions.]
 +
** K. Bringmann and K. Ono, Math. Annalen 345, pages 547-558 (2009)
 +
* Zwegers [http://mathsci.ucd.ie/~zwegers/presentations/002.pdf Appell-Lerch sums as mock modular forms], 2008
 +
* A. M. Semikhatov [http://dx.doi.org/10.1007/s00220-008-0677-0 Higher String Functions, Higher-Level Appell Functions, and the Logarithmic sℓ︿2k/u(1) &nbsp;CFT Model]
 +
* A.M. Semikhatov [http://dx.doi.org/10.1007/s00220-004-1280-7 Higher-Level Appell Functions, Modular Transformations, and Characters]
 +
* Sander [http://front.math.ucdavis.edu/author/S.Zwegers Zwegers], [http://front.math.ucdavis.edu/0807.4834 Mock Theta Functions], 2002
 +
* [http://dx.doi.org/10.1007/s002200000315 Integrable highest weight modules over affine superalgebras and Appell’s function]
 +
** Kac V.G., Wakimoto M, Commun. Math. Phys. '''215'''(3), 631–682 (2001)
 +
*  N = 2 superconformal minimal models
 +
* Yutaka Matsuo [http://ptp.ipap.jp/link?PTP/77/793/ Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra] , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
 +
* C. Truesdell [http://www.jstor.org/stable/1969153 On a Function Which Occurs in the Theory of the Structure of Polymers], The Annals of Mathematics, Second Series, Vol. 46, No. 1 (Jan., 1945), pp. 144-157
 +
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:mock modular forms]]
 +
[[분류:math]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 09:49 기준 최신판

introduction

  • one way to construct mock theta functions
  • characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
  • 3rd order mock theta functions



Appell-Lerch sum

  • Appell–Lerch sums were first studied by Paul Émile Appell (1884) and Mathias Lerch (1892).
  • Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
  • Zwegers used them to show that mock theta functions are essentially mock modular forms.
  • The Appell–Lerch series is

\[ \mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n} \] where \[\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}\] and \[\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}\]

completion by adding a non-holomorphic part

  • definte \(\hat\mu(u,v;\tau)\) by

\[\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2\] where \[R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}\] and \(y=\Im(\tau)\) and \[E(z) = 2\int_0^ze^{-\pi u^2}\,du\]


Mordell integral

\[ \mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau) \] where \[M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx\]

  • non-holomorpic part is an incomplete period integral of the modular form \(\eta^3\)

\[ iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz \]

  • property

\[ R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau) \]


modularity

\[\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),\] \[e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).\]

  • In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
  • Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.


special case

  • mock theta function

\[ \mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}} \]

  • Mordell integrals

\[ \mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx \]

  • completion

\[ \hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2 \]

  • modularity

\[ \hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau) \]

higher level Appell function

  • higher-level Appell functions
    • a particular instance of indefinite theta series



history



related items


encyclopedia



articles