"Appell-Lerch sums"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 6개는 보이지 않습니다)
10번째 줄: 10번째 줄:
  
 
==Appell-Lerch sum==
 
==Appell-Lerch sum==
 
+
* Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]).  
Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]). Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums, and Zwegers used them to show that mock theta functions are essentially mock modular forms.
+
* Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
 
+
* Zwegers used them to show that mock theta functions are essentially mock modular forms.
+
* The Appell–Lerch series is
 
+
:<math>
The Appell–Lerch series is
+
\mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}
 
+
</math>
<math>\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}</math>
 
 
 
 
 
 
 
where
 
where
 
+
:<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
 
 
 
 
 
 
 
and
 
and
 
+
:<math>\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math>
+
===completion by adding a non-holomorphic part===
 
+
* definte <math>\hat\mu(u,v;\tau)</math> by
<math>\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math>
+
:<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
 
 
 
 
 
The modified series
 
 
 
 
 
 
: <math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
 
 
 
 
 
 
 
where
 
where
 +
:<math>R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
 +
and <math>y=\Im(\tau)</math> and
 +
:<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
  
 
 
: <math>R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
 
 
 
 
and <em style="">y</em> = Im(τ) and
 
 
 
 
: <math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
 
 
 
 
satisfies the following transformation properties
 
  
+
===Mordell integral===
 +
* [[Mordell integrals]]
 +
:<math>
 +
\mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau)
 +
</math>
 +
where
 +
:<math>M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx</math>
 +
* non-holomorpic part is an incomplete period integral of the modular form <math>\eta^3</math>
 +
:<math>
 +
iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz
 +
</math>
 +
* property
 +
:<math>
 +
R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau)
 +
</math>
  
: <math>\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),</math>
 
  
 
  
: <math>e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).</math>
+
===modularity===
 +
:<math>\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),</math>
 +
:<math>e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).</math>
 +
* In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
 +
* Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
  
 
  
In other words the modified Appell–Lerch series transforms like a modular form with respect to τ. Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
+
===special case===
 +
* mock theta function
 +
:<math>
 +
\mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}}
 +
</math>
 +
* Mordell integrals
 +
:<math>
 +
\mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx
 +
</math>
  
+
* completion
 
+
:<math>
+
\hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2
 +
</math>
 +
* modularity
 +
:<math>
 +
\hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau)
 +
</math>
  
 
==higher level Appell function==
 
==higher level Appell function==
  
*  higher-level Appell functions<br>
+
*  higher-level Appell functions
 
** a particular instance of indefinite theta series
 
** a particular instance of indefinite theta series
  
90번째 줄: 87번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
+
 
  
 
   
 
   
98번째 줄: 95번째 줄:
 
* [[Kac-Wakimoto modules]]
 
* [[Kac-Wakimoto modules]]
 
* [[indefinite theta functions]]
 
* [[indefinite theta functions]]
 +
* [[Mathieu moonshine]]
  
 
  
 
  
 
==encyclopedia==
 
==encyclopedia==
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Appell
 
* http://en.wikipedia.org/wiki/Appell
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
 
  
 
   
 
   
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
   
 
   
  
 
==articles==
 
==articles==
* [http://dx.doi.org/10.1088/1751-8113/42/30/304010 Superconformal Algebras and Mock Theta Functions Tohru Eguchi]
+
* Mortenson, Eric. 2012. “On the Dual Nature of Partial Theta Functions and Appell-Lerch Sums.” arXiv:1208.6316 [math], August. http://arxiv.org/abs/1208.6316.
** Kazuhiro Hikami, 2009
+
* Tohru Eguchi and Kazuhiro Hikami [http://dx.doi.org/10.1088/1751-8113/42/30/304010 Superconformal Algebras and Mock Theta Functions], 2009
 
* [http://www.math.wisc.edu/~ono/reprints/122.pdf Some characters of Kac and Wakimoto and nonholomorphic modular functions.]
 
* [http://www.math.wisc.edu/~ono/reprints/122.pdf Some characters of Kac and Wakimoto and nonholomorphic modular functions.]
 
** K. Bringmann and K. Ono, Math. Annalen 345, pages 547-558 (2009)
 
** K. Bringmann and K. Ono, Math. Annalen 345, pages 547-558 (2009)
* [http://mathsci.ucd.ie/~zwegers/presentations/002.pdf Appell-Lerch sums as mock modular forms]
+
* Zwegers [http://mathsci.ucd.ie/~zwegers/presentations/002.pdf Appell-Lerch sums as mock modular forms], 2008
** Zwegers, 2008
+
* A. M. Semikhatov [http://dx.doi.org/10.1007/s00220-008-0677-0 Higher String Functions, Higher-Level Appell Functions, and the Logarithmic sℓ︿2k/u(1) &nbsp;CFT Model]
* [http://dx.doi.org/10.1007/s00220-008-0677-0 Higher String Functions, Higher-Level Appell Functions, and the Logarithmic sℓ︿2k/u(1) &nbsp;CFT Model]
+
* A.M. Semikhatov [http://dx.doi.org/10.1007/s00220-004-1280-7 Higher-Level Appell Functions, Modular Transformations, and Characters]
** A. M. Semikhatov
+
* Sander [http://front.math.ucdavis.edu/author/S.Zwegers Zwegers], [http://front.math.ucdavis.edu/0807.4834 Mock Theta Functions], 2002
* [http://dx.doi.org/10.1007/s00220-004-1280-7 Higher-Level Appell Functions, Modular Transformations, and Characters]
 
** A.M. Semikhatov
 
* [http://front.math.ucdavis.edu/0807.4834 Mock Theta Functions]
 
** Sander [http://front.math.ucdavis.edu/author/S.Zwegers Zwegers], 2002
 
 
* [http://dx.doi.org/10.1007/s002200000315 Integrable highest weight modules over affine superalgebras and Appell’s function]
 
* [http://dx.doi.org/10.1007/s002200000315 Integrable highest weight modules over affine superalgebras and Appell’s function]
 
** Kac V.G., Wakimoto M, Commun. Math. Phys. '''215'''(3), 631–682 (2001)
 
** Kac V.G., Wakimoto M, Commun. Math. Phys. '''215'''(3), 631–682 (2001)
143번째 줄: 119번째 줄:
 
* Yutaka Matsuo [http://ptp.ipap.jp/link?PTP/77/793/ Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra] , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
 
* Yutaka Matsuo [http://ptp.ipap.jp/link?PTP/77/793/ Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra] , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
 
* C. Truesdell [http://www.jstor.org/stable/1969153 On a Function Which Occurs in the Theory of the Structure of Polymers], The Annals of Mathematics, Second Series, Vol. 46, No. 1 (Jan., 1945), pp. 144-157
 
* C. Truesdell [http://www.jstor.org/stable/1969153 On a Function Which Occurs in the Theory of the Structure of Polymers], The Annals of Mathematics, Second Series, Vol. 46, No. 1 (Jan., 1945), pp. 144-157
* http://dx.doi.org/10.1007/s00220-004-1280-7
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:mock modular forms]]
 
[[분류:mock modular forms]]
 
[[분류:math]]
 
[[분류:math]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 09:49 기준 최신판

introduction

  • one way to construct mock theta functions
  • characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
  • 3rd order mock theta functions



Appell-Lerch sum

  • Appell–Lerch sums were first studied by Paul Émile Appell (1884) and Mathias Lerch (1892).
  • Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
  • Zwegers used them to show that mock theta functions are essentially mock modular forms.
  • The Appell–Lerch series is

\[ \mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n} \] where \[\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}\] and \[\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}\]

completion by adding a non-holomorphic part

  • definte \(\hat\mu(u,v;\tau)\) by

\[\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2\] where \[R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}\] and \(y=\Im(\tau)\) and \[E(z) = 2\int_0^ze^{-\pi u^2}\,du\]


Mordell integral

\[ \mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau) \] where \[M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx\]

  • non-holomorpic part is an incomplete period integral of the modular form \(\eta^3\)

\[ iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz \]

  • property

\[ R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau) \]


modularity

\[\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),\] \[e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).\]

  • In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
  • Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.


special case

  • mock theta function

\[ \mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}} \]

  • Mordell integrals

\[ \mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx \]

  • completion

\[ \hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2 \]

  • modularity

\[ \hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau) \]

higher level Appell function

  • higher-level Appell functions
    • a particular instance of indefinite theta series



history



related items


encyclopedia



articles